Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China.
Materials Physics Center (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, Donostia-San Sebastián 20018, Spain.
Nat Commun. 2017 May 19;8:15225. doi: 10.1038/ncomms15225.
The coherent interaction between quantum emitters and photonic modes in cavities underlies many of the current strategies aiming at generating and controlling photonic quantum states. A plasmonic nanocavity provides a powerful solution for reducing the effective mode volumes down to nanometre scale, but spatial control at the atomic scale of the coupling with a single molecular emitter is challenging. Here we demonstrate sub-nanometre spatial control over the coherent coupling between a single molecule and a plasmonic nanocavity in close proximity by monitoring the evolution of Fano lineshapes and photonic Lamb shifts in tunnelling electron-induced luminescence spectra. The evolution of the Fano dips allows the determination of the effective interaction distance of ∼1 nm, coupling strengths reaching ∼15 meV and a giant self-interaction induced photonic Lamb shift of up to ∼3 meV. These results open new pathways to control quantum interference and field-matter interaction at the nanoscale.
在腔体内的量子发射器和光子模式之间的相干相互作用是目前许多旨在产生和控制光子量子态的策略的基础。等离子体纳米腔为将有效模式体积减小到纳米尺度提供了强大的解决方案,但在原子尺度上控制与单个分子发射器的耦合具有挑战性。在这里,我们通过监测隧穿电子诱导发光光谱中的 Fano 线形状和光子 Lamb 位移的演变,演示了在单个分子和等离子体纳米腔之间的相干耦合的亚纳米空间控制。Fano 凹陷的演化允许确定有效相互作用距离约为 1nm,耦合强度达到约 15meV,以及高达约 3meV 的巨大自相互作用诱导的光子 Lamb 位移。这些结果为在纳米尺度上控制量子干涉和场物质相互作用开辟了新途径。