Suppr超能文献

从中国出发的旅客:新型冠状病毒(2019-nCoV)传入非洲和南美洲的风险较低。

Passengers' destinations from China: low risk of Novel Coronavirus (2019-nCoV) transmission into Africa and South America.

机构信息

The Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire.

Institute of Health Informatics, University College London, London, UK.

出版信息

Epidemiol Infect. 2020 Feb 26;148:e41. doi: 10.1017/S0950268820000424.

Abstract

Novel Coronavirus (2019-nCoV [SARS-COV-2]) was detected in humans during the last week of December 2019 at Wuhan city in China, and caused 24 554 cases in 27 countries and territories as of 5 February 2020. The objective of this study was to estimate the risk of transmission of 2019-nCoV through human passenger air flight from four major cities of China (Wuhan, Beijing, Shanghai and Guangzhou) to the passengers' destination countries. We extracted the weekly simulated passengers' end destination data for the period of 1-31 January 2020 from FLIRT, an online air travel dataset that uses information from 800 airlines to show the direct flight and passengers' end destination. We estimated a risk index of 2019-nCoV transmission based on the number of travellers to destination countries, weighted by the number of confirmed cases of the departed city reported by the World Health Organization (WHO). We ranked each country based on the risk index in four quantiles (4th quantile being the highest risk and 1st quantile being the lowest risk). During the period, 388 287 passengers were destined for 1297 airports in 168 countries or territories across the world. The risk index of 2019-nCoV among the countries had a very high correlation with the WHO-reported confirmed cases (0.97). According to our risk score classification, of the countries that reported at least one Coronavirus-infected pneumonia (COVID-19) case as of 5 February 2020, 24 countries were in the 4th quantile of the risk index, two in the 3rd quantile, one in the 2nd quantile and none in the 1st quantile. Outside China, countries with a higher risk of 2019-nCoV transmission are Thailand, Cambodia, Malaysia, Canada and the USA, all of which reported at least one case. In pan-Europe, UK, France, Russia, Germany and Italy; in North America, USA and Canada; in Oceania, Australia had high risk, all of them reported at least one case. In Africa and South America, the risk of transmission is very low with Ethiopia, South Africa, Egypt, Mauritius and Brazil showing a similar risk of transmission compared to the risk of any of the countries where at least one case is detected. The risk of transmission on 31 January 2020 was very high in neighbouring Asian countries, followed by Europe (UK, France, Russia and Germany), Oceania (Australia) and North America (USA and Canada). Increased public health response including early case recognition, isolation of identified case, contract tracing and targeted airport screening, public awareness and vigilance of health workers will help mitigate the force of further spread to naïve countries.

摘要

新型冠状病毒(2019-nCoV[SARS-CoV-2])于 2019 年 12 月最后一周在中国武汉市被发现,截至 2020 年 2 月 5 日,已在 27 个国家和地区造成 24554 例病例。本研究的目的是估计从中国四个主要城市(武汉、北京、上海和广州)飞往乘客目的地国家的 2019-nCoV 通过人体旅客航班传播的风险。我们从 FLIRT 中提取了 2020 年 1 月 1 日至 31 日期间每周模拟的乘客最终目的地数据,FLIRT 是一个在线航空旅行数据集,使用来自 800 家航空公司的信息显示直飞航班和乘客最终目的地。我们根据世界卫生组织(WHO)报告的出发城市确诊病例数量,对前往目的地国家的旅行者数量进行加权,估算了 2019-nCoV 传播的风险指数。我们根据风险指数对每个国家进行了排名,分为四个四分位数(第 4 四分位数的风险最高,第 1 四分位数的风险最低)。在此期间,有 388287 名乘客前往全球 168 个国家或地区的 1297 个机场。各国的 2019-nCoV 风险指数与世界卫生组织报告的确诊病例之间存在很高的相关性(0.97)。根据我们的风险评分分类,截至 2020 年 2 月 5 日,至少报告了一例冠状病毒感染肺炎(COVID-19)病例的国家中,有 24 个国家处于风险指数的第 4 四分位数,2 个国家处于第 3 四分位数,1 个国家处于第 2 四分位数,没有国家处于第 1 四分位数。在中国境外,泰国、柬埔寨、马来西亚、加拿大和美国等国家的 2019-nCoV 传播风险较高,这些国家均报告了至少一例病例。在整个欧洲,英国、法国、俄罗斯、德国和意大利;在北美,美国和加拿大;在大洋洲,澳大利亚风险较高,这些国家均报告了至少一例病例。在非洲和南美洲,传播风险很低,埃塞俄比亚、南非、埃及、毛里求斯和巴西与任何至少有一例病例的国家的传播风险相似。2020 年 1 月 31 日,亚洲邻国的传播风险很高,其次是欧洲(英国、法国、俄罗斯和德国)、大洋洲(澳大利亚)和北美(美国和加拿大)。加强公共卫生应对措施,包括早期病例识别、确诊病例隔离、接触者追踪和有针对性的机场筛查、提高卫生工作者的公众意识和警惕性,将有助于减轻向幼稚国家进一步传播的力度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验