Suppr超能文献

微生物组的全球化学效应包括新的胆汁酸缀合。

Global chemical effects of the microbiome include new bile-acid conjugations.

机构信息

Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA.

Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA.

出版信息

Nature. 2020 Mar;579(7797):123-129. doi: 10.1038/s41586-020-2047-9. Epub 2020 Feb 26.

Abstract

A mosaic of cross-phylum chemical interactions occurs between all metazoans and their microbiomes. A number of molecular families that are known to be produced by the microbiome have a marked effect on the balance between health and disease. Considering the diversity of the human microbiome (which numbers over 40,000 operational taxonomic units), the effect of the microbiome on the chemistry of an entire animal remains underexplored. Here we use mass spectrometry informatics and data visualization approaches to provide an assessment of the effects of the microbiome on the chemistry of an entire mammal by comparing metabolomics data from germ-free and specific-pathogen-free mice. We found that the microbiota affects the chemistry of all organs. This included the amino acid conjugations of host bile acids that were used to produce phenylalanocholic acid, tyrosocholic acid and leucocholic acid, which have not previously been characterized despite extensive research on bile-acid chemistry. These bile-acid conjugates were also found in humans, and were enriched in patients with inflammatory bowel disease or cystic fibrosis. These compounds agonized the farnesoid X receptor in vitro, and mice gavaged with the compounds showed reduced expression of bile-acid synthesis genes in vivo. Further studies are required to confirm whether these compounds have a physiological role in the host, and whether they contribute to gut diseases that are associated with microbiome dysbiosis.

摘要

后生动物与其微生物组之间存在着跨门的化学相互作用马赛克。许多已知由微生物组产生的分子家族对健康与疾病之间的平衡有显著影响。考虑到人类微生物组的多样性(超过 40000 个操作分类单位),微生物组对整个动物化学的影响仍未得到充分探索。在这里,我们使用质谱信息学和数据可视化方法,通过比较无菌和特定病原体小鼠的代谢组学数据,评估微生物组对整个哺乳动物化学的影响。我们发现微生物群会影响所有器官的化学性质。这包括宿主胆酸的氨基酸缀合物,这些缀合物被用来产生苯丙氨酸胆酸、酪氨酸胆酸和亮氨酸胆酸,尽管对胆酸化学进行了广泛的研究,但这些胆酸缀合物以前并未被表征。这些胆酸缀合物也在人类中被发现,并在炎症性肠病或囊性纤维化患者中富集。这些化合物在体外激动法尼醇 X 受体,并用这些化合物灌胃的小鼠体内的胆汁酸合成基因表达减少。需要进一步的研究来确认这些化合物是否在宿主中有生理作用,以及它们是否与与微生物组失调相关的肠道疾病有关。

相似文献

4
Impaired Intestinal Farnesoid X Receptor Signaling in Cystic Fibrosis Mice.囊性纤维化小鼠肠道法尼醇 X 受体信号转导受损。
Cell Mol Gastroenterol Hepatol. 2020;9(1):47-60. doi: 10.1016/j.jcmgh.2019.08.006. Epub 2019 Aug 27.
6
Microbiota-induced obesity requires farnesoid X receptor.微生物群诱导的肥胖需要法尼醇X受体。
Gut. 2017 Mar;66(3):429-437. doi: 10.1136/gutjnl-2015-310283. Epub 2016 Jan 6.
10
Review: microbial transformations of human bile acids.综述:人胆汁酸的微生物转化
Microbiome. 2021 Jun 14;9(1):140. doi: 10.1186/s40168-021-01101-1.

引用本文的文献

本文引用的文献

1
Mass spectrometry searches using MASST.使用MASST进行质谱搜索。
Nat Biotechnol. 2020 Jan;38(1):23-26. doi: 10.1038/s41587-019-0375-9.
5
Inflammation-induced IgA+ cells dismantle anti-liver cancer immunity.炎症诱导的IgA+细胞破坏抗肝癌免疫。
Nature. 2017 Nov 16;551(7680):340-345. doi: 10.1038/nature24302. Epub 2017 Nov 8.
6
Meta-mass shift chemical profiling of metabolomes from coral reefs.珊瑚礁代谢组元的元质量偏移化学剖析。
Proc Natl Acad Sci U S A. 2017 Oct 31;114(44):11685-11690. doi: 10.1073/pnas.1710248114. Epub 2017 Oct 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验