Suppr超能文献

基于字典学习的颅内记录中刺激伪迹的信号恢复。

Signal recovery from stimulation artifacts in intracranial recordings with dictionary learning.

机构信息

Department of Bioengineering, University of Washington, Seattle, WA, United States of America. Medical Scientist Training Program, University of Washington, Seattle, WA, United States of America. Center for Neurotechnology, Seattle, WA, United States of America. University of Washington Institute for Neuroengineering, Seattle, WA, United States of America. Author to whom any correspondence should be addressed.

出版信息

J Neural Eng. 2020 Apr 9;17(2):026023. doi: 10.1088/1741-2552/ab7a4f.

Abstract

OBJECTIVE

Electrical stimulation of the human brain is commonly used for eliciting and inhibiting neural activity for clinical diagnostics, modifying abnormal neural circuit function for therapeutics, and interrogating cortical connectivity. However, recording electrical signals with concurrent stimulation results in dominant electrical artifacts that mask the neural signals of interest. Here we develop a method to reproducibly and robustly recover neural activity during concurrent stimulation. We concentrate on signal recovery across an array of electrodes without channel-wise fine-tuning of the algorithm. Our goal includes signal recovery with trains of stimulation pulses, since repeated, high-frequency pulses are often required to induce desired effects in both therapeutic and research domains. We have made all of our code and data publicly available.

APPROACH

We developed an algorithm that automatically detects templates of artifacts across many channels of recording, creating a dictionary of learned templates using unsupervised clustering. The artifact template that best matches each individual artifact pulse is subtracted to recover the underlying activity. To assess the success of our method, we focus on whether it extracts physiologically interpretable signals from real recordings.

MAIN RESULTS

We demonstrate our signal recovery approach on invasive electrophysiologic recordings from human subjects during stimulation. We show the recovery of meaningful neural signatures in both electrocorticographic (ECoG) arrays and deep brain stimulation (DBS) recordings. In addition, we compared cortical responses induced by the stimulation of primary somatosensory (S1) by natural peripheral touch, as well as motor cortex activity with and without concurrent S1 stimulation.

SIGNIFICANCE

Our work will enable future advances in neural engineering with simultaneous stimulation and recording.

摘要

目的

对人脑进行电刺激通常用于临床诊断中引出和抑制神经活动、治疗中修饰异常神经回路功能以及研究皮质连接。然而,在进行刺激的同时记录电信号会产生主导性的电伪迹,从而掩盖感兴趣的神经信号。在这里,我们开发了一种在同时刺激时可靠地恢复神经活动的方法。我们专注于在不逐个通道微调算法的情况下,从电极阵列中进行信号恢复。我们的目标包括恢复刺激脉冲串的信号,因为在治疗和研究领域中,通常需要重复的高频脉冲来产生所需的效果。我们已经将所有代码和数据公开。

方法

我们开发了一种算法,该算法可以自动跨多个记录通道检测伪迹模板,使用无监督聚类创建学习模板字典。与每个单独的伪迹脉冲匹配的最佳伪迹模板被减去,以恢复潜在的活动。为了评估我们方法的成功,我们重点关注它是否从真实记录中提取出具有生理意义的信号。

主要结果

我们在人类刺激期间的侵入性电生理记录上演示了我们的信号恢复方法。我们展示了在脑电图 (ECoG) 阵列和深部脑刺激 (DBS) 记录中恢复有意义的神经特征。此外,我们比较了由自然外周触摸刺激初级体感皮层 (S1) 以及有和没有同时 S1 刺激的运动皮层活动引起的皮层反应。

意义

我们的工作将为具有同时刺激和记录的神经工程学的未来发展提供支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ebd/7333778/6dbc0814a867/nihms-1602315-f0010.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验