Suppr超能文献

一种用于自动量化肺裂完整性的方法:在严重肺气肿患者数据库中的评估。

A method for the automatic quantification of the completeness of pulmonary fissures: evaluation in a database of subjects with severe emphysema.

机构信息

Center for Computer Vision and Imaging Biomarkers and Thoracic Imaging Research Group, Department of Radiological Sciences, David Geffen School of Medicine, University of California-Los Angeles, 924 Westwood Blvd, suite 650, Los Angeles, CA 90024, USA.

出版信息

Eur Radiol. 2012 Feb;22(2):302-9. doi: 10.1007/s00330-011-2278-0. Epub 2011 Oct 8.

Abstract

OBJECTIVES

To propose and evaluate a technique for automatic quantification of fissural completeness from chest computed tomography (CT) in a database of subjects with severe emphysema.

METHODS

Ninety-six CT studies of patients with severe emphysema were included. The lungs, fissures and lobes were automatically segmented. The completeness of the fissures was calculated as the percentage of the lobar border defined by a fissure. The completeness score of the automatic method was compared with a visual consensus read by three radiologists using boxplots, rank sum tests and ROC analysis.

RESULTS

The consensus read found 49% (47/96), 15% (14/96) and 67% (64/96) of the right major, right minor and left major fissures to be complete. For all fissures visually assessed as being complete the automatic method resulted in significantly higher completeness scores (mean 92.78%) than for those assessed as being partial or absent (mean 77.16%; all p values <0.001). The areas under the curves for the automatic fissural completeness were 0.88, 0.91 and 0.83 for the right major, right minor and left major fissures respectively.

CONCLUSIONS

An automatic method is able to quantify fissural completeness in a cohort of subjects with severe emphysema consistent with a visual consensus read of three radiologists.

KEY POINTS

• Lobar fissures are important for assessing the extent and distribution of lung disease • Modern CT allows automatic lobar segmentation and assessment of the fissures • This segmentation can also assess the completeness of the fissures. • Such assessment is important for decisions about novel therapies (eg for emphysema).

摘要

目的

提出并评估一种从严重肺气肿患者的 CT 数据库中自动量化裂隙完整性的技术。

方法

纳入 96 例严重肺气肿患者的 CT 研究。自动分割肺部、裂隙和肺叶。裂隙的完整性通过裂隙定义的肺叶边界的百分比来计算。自动方法的完整性评分与三位放射科医生的视觉共识阅读进行比较,使用箱线图、秩和检验和 ROC 分析。

结果

共识阅读发现 49%(47/96)、15%(14/96)和 67%(64/96)的右主、右小和左主裂隙完整。对于所有视觉上评估为完整的裂隙,自动方法的完整性评分显著高于部分或缺失的裂隙(平均 92.78%比 77.16%;所有 p 值均<0.001)。自动裂隙完整性的曲线下面积分别为右主、右小和左主裂隙的 0.88、0.91 和 0.83。

结论

一种自动方法能够定量评估严重肺气肿患者队列中裂隙的完整性,与三位放射科医生的视觉共识阅读一致。

关键点

• 肺裂对于评估肺疾病的范围和分布很重要。• 现代 CT 允许自动进行肺叶分割和评估裂隙。• 这种分割还可以评估裂隙的完整性。• 这种评估对于新型治疗方法(例如肺气肿)的决策很重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f9e/3249027/66d3963c3851/330_2011_2278_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验