Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
ACS Appl Mater Interfaces. 2020 Apr 1;12(13):14761-14769. doi: 10.1021/acsami.9b19309. Epub 2020 Mar 17.
In this paper, we proposed to enhance a signal-to-noise (S/N) ratio for detecting a primary stress marker, serotonin, using a potentiometric biosensor modified by a well-designed nanofilter film. An extended-Au-gate field-effect transistor (EG-Au-gate FET) biosensor exhibits highly sensitive electrochemical detection toward various small biomolecules, including serotonin. Therefore, to enhance the S/N ratio for the serotonin detection, we designed an appropriate nanofilter film on the Au electrode by combining the aryldiazonium salt reduction strategy and boronate affinity. That is, only serotonin can approach the Au sensing surface to generate an electrical signal; interfering biomolecules are prevented from penetrating through the nanofilter, either because large interfering biomolecules cannot permeate through the highly dense, nanoporous multilayer film, or because phenylboronic acids included in the nanofilter captures small interfering biomolecules (e.g., catecholamines). The potentiometric biosensor modified by such a nanofilter film detected serotonin in a model sample solution containing catecholamines, cortisol, and human serum albumin with a high S/N ratio for the serotonin levels in the blood. Furthermore, we found that the effect of the nanofilter directly reflects the binding affinity of the receptors such as phenylboronic acids included in the nanofilter; thus, the selectivity and dynamic range of small target biomolecules can be tuned freely by designing the appropriate receptors for the nanofilter. The results show that a well-designed nanofilter biointerface can be a versatile biosensing platform for point-of-care testing, particularly for a simple stress check.
在本文中,我们提出了一种通过使用设计良好的纳米滤膜修饰的电位生物传感器来提高检测主要应激标志物血清素的信噪比(S/N)的方法。扩展型金栅场效应晶体管(EG-Au-gate FET)生物传感器对各种小分子生物分子,包括血清素,表现出高度灵敏的电化学检测。因此,为了提高血清素检测的 S/N 比,我们通过结合芳基重氮盐还原策略和硼酸亲和性,在 Au 电极上设计了适当的纳米滤膜。也就是说,只有血清素可以接近 Au 传感表面以产生电信号;干扰生物分子被阻止通过纳米滤膜,要么是因为大的干扰生物分子不能通过高度致密的纳米多孔多层膜渗透,要么是因为纳米滤膜中包含的苯硼酸捕获了小的干扰生物分子(例如儿茶酚胺)。用这种纳米滤膜修饰的电位生物传感器在含有儿茶酚胺、皮质醇和人血清白蛋白的模型样品溶液中检测血清素,具有较高的血清素 S/N 比。此外,我们发现纳米滤膜的作用直接反映了纳米滤膜中包含的受体(如苯硼酸)的结合亲和力;因此,可以通过设计适当的纳米滤膜受体来自由调节小分子靶生物分子的选择性和动态范围。结果表明,设计良好的纳米滤膜生物界面可以成为用于即时检测的多功能生物传感平台,特别是用于简单的应激检查。