Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California.
Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio.
Clin Cancer Res. 2020 Apr 15;26(8):1915-1923. doi: 10.1158/1078-0432.CCR-19-2659. Epub 2020 Mar 5.
Between 30%-40% of patients with prostate cancer experience disease recurrence following radical prostatectomy. Existing clinical models for recurrence risk prediction do not account for population-based variation in the tumor phenotype, despite recent evidence suggesting the presence of a unique, more aggressive prostate cancer phenotype in African American (AA) patients. We investigated the capacity of digitally measured, population-specific phenotypes of the intratumoral stroma to create improved models for prediction of recurrence following radical prostatectomy.
This study included 334 radical prostatectomy patients subdivided into training (V, = 127), validation 1 (V, = 62), and validation 2 (V, = 145). Hematoxylin and eosin-stained slides from resected prostates were digitized, and 242 quantitative descriptors of the intratumoral stroma were calculated using a computational algorithm. Machine learning and elastic net Cox regression models were constructed using V to predict biochemical recurrence-free survival based on these features. Performance of these models was assessed using V and V, both overall and in population-specific cohorts.
An AA-specific, automated stromal signature, AAstro, was prognostic of recurrence risk in both independent validation datasets [V: AUC = 0.87, HR = 4.71 (95% confidence interval (CI), 1.65-13.4), = 0.003; V: AUC = 0.77, HR = 5.7 (95% CI, 1.48-21.90), = 0.01]. AAstro outperformed clinical standard Kattan and CAPRA-S nomograms, and the underlying stromal descriptors were strongly associated with IHC measurements of specific tumor biomarker expression levels.
Our results suggest that considering population-specific information and stromal morphology has the potential to substantially improve accuracy of prognosis and risk stratification in AA patients with prostate cancer.
在接受根治性前列腺切除术的前列腺癌患者中,有 30%-40%的患者会出现疾病复发。尽管最近有证据表明,非裔美国人(AA)患者中存在一种独特且侵袭性更强的前列腺癌表型,但现有的复发风险预测临床模型并未考虑肿瘤表型的人群差异。我们研究了通过数字测量获得的、人群特异性的肿瘤内基质表型是否有能力为根治性前列腺切除术后的复发预测建立更好的模型。
本研究纳入了 334 例接受根治性前列腺切除术的患者,分为训练队列(V,n=127)、验证队列 1(V,n=62)和验证队列 2(V,n=145)。切除的前列腺组织的苏木精和伊红染色切片被数字化,并使用计算算法计算了 242 个肿瘤内基质的定量描述符。使用 V 构建机器学习和弹性网 Cox 回归模型,根据这些特征预测生化无复发生存率。使用 V 和 V 评估这些模型的性能,包括总体和特定人群队列。
AAstro 是一种 AA 特异性的、自动化的基质特征,可预测两个独立验证数据集的复发风险[V:AUC=0.87,HR=4.71(95%置信区间(CI),1.65-13.4),P=0.003;V:AUC=0.77,HR=5.7(95%CI,1.48-21.90),P=0.01]。AAstro 优于临床标准的 Kattan 和 CAPRA-S 列线图,并且基础基质描述符与特定肿瘤生物标志物表达水平的 IHC 测量结果密切相关。
我们的研究结果表明,考虑人群特异性信息和基质形态有可能显著提高 AA 前列腺癌患者预后和风险分层的准确性。