Laboratoire Hétérochimie Fondamentale et Appliquée, Université Paul Sabatier/CNRS UMR 5069, 118 Route de Narbonne, 31062 Toulouse, France.
Molecules. 2020 Mar 4;25(5):1141. doi: 10.3390/molecules25051141.
Ni catalysis constitutes an active research arena with notable applications in diverse fields. By analogy with its parent element palladium, Ni catalysts provide an appealing entry to build molecular complexity via cross-coupling reactions. While Pd catalysts typically involve a M/M redox scenario, in the case of Ni congeners the mechanistic elucidation becomes more challenging due to their innate properties (like enhanced reactivity, propensity to undergo single electron transformations vs. 2e redox sequences or weaker M-Ligand interaction). In recent years, mechanistic studies have demonstrated the participation of high-valent Ni and Ni species in a plethora of cross-coupling events, thus accessing novel synthetic schemes and unprecedented transformations. This comprehensive review collects the main contributions effected within this topic, and focuses on the key role of isolated and/or spectroscopically identified Ni and Ni complexes. Amongst other transformations, the resulting Ni and Ni compounds have efficiently accomplished: C-C and C-heteroatom bond formation C-H bond functionalization; and N-N and C-N cyclizative couplings to forge heterocycles.
镍催化是一个活跃的研究领域,在许多领域都有显著的应用。通过类比其母体元素钯,镍催化剂通过交叉偶联反应为构建分子复杂性提供了一个有吸引力的途径。虽然钯催化剂通常涉及 M/M 氧化还原情景,但对于镍同系物,由于其固有性质(如增强的反应性、倾向于经历单电子转化与 2e 氧化还原序列或较弱的 M-配体相互作用),其机理阐明变得更加具有挑战性。近年来,机理研究表明高价镍和镍物种参与了大量交叉偶联反应,从而开辟了新的合成方案和前所未有的转化途径。本综述收集了在这一主题中进行的主要贡献,并重点介绍了分离和/或光谱鉴定的镍和镍配合物的关键作用。在其他转化中,所得到的镍和镍化合物有效地完成了:C-C 和 C-杂原子键形成 C-H 键功能化;以及 N-N 和 C-N 环化偶联以形成杂环。