Xie Rui, Li Geng, Cao Peng, Tan Zhifei, Wang Jianru
The College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China.
The Institute of Xi'an Aerospace Solid Propulsion Technology, Xi'an 710025, China.
Materials (Basel). 2025 May 15;18(10):2294. doi: 10.3390/ma18102294.
The application of ceramic particle-reinforced metal matrix composites (CPRMMCs) in the nuclear power sector is primarily dependent on their mechanical and thermal properties. A comprehensive understanding of the structure-property (SP) linkages between microstructures and macroscopic properties is critical for optimizing material properties. However, traditional studies on SP linkages generally rely on experimental methods, theoretical analysis, and numerical simulations, which are often associated with high time and economic costs. To address this challenge, this study proposes a novel method based on Materials Informatics (MI), combining the finite element method (FEM), graph Fourier transform, principal component analysis (PCA), and machine learning models to establish the SP linkages between the microstructure and thermodynamic properties of CPRMMCs. Specifically, FEM is used to model the microstructures of CPRMMCs with varying particle volume fractions and sizes, and their elastic modulus, thermal conductivity, and coefficient of thermal expansion are computed. Next, the statistical features of the microstructure are captured using graph Fourier transform based on two-point spatial correlations, and PCA is applied to reduce dimensionality and extract key features. Finally, a polynomial kernel support vector regression (Poly-SVR) model optimized by Bayesian methods is employed to establish the nonlinear relationship between the microstructure and thermodynamic properties. The results show that this method can effectively predict FEM results using only 5-6 microstructure features, with the values exceeding 0.91 for the prediction of thermodynamic properties. This study provides a promising approach for accelerating the innovation and design optimization of CPRMMCs.
陶瓷颗粒增强金属基复合材料(CPRMMCs)在核电领域的应用主要取决于其机械性能和热性能。全面理解微观结构与宏观性能之间的结构-性能(SP)联系对于优化材料性能至关重要。然而,传统的SP联系研究通常依赖于实验方法、理论分析和数值模拟,这些方法往往伴随着高昂的时间和经济成本。为应对这一挑战,本研究提出了一种基于材料信息学(MI)的新方法,结合有限元方法(FEM)、图傅里叶变换、主成分分析(PCA)和机器学习模型,以建立CPRMMCs微观结构与热力学性能之间的SP联系。具体而言,使用FEM对具有不同颗粒体积分数和尺寸的CPRMMCs微观结构进行建模,并计算其弹性模量、热导率和热膨胀系数。接下来,基于两点空间相关性使用图傅里叶变换捕获微观结构的统计特征,并应用PCA进行降维和提取关键特征。最后,采用贝叶斯方法优化的多项式核支持向量回归(Poly-SVR)模型来建立微观结构与热力学性能之间的非线性关系。结果表明,该方法仅使用5-6个微观结构特征就能有效预测FEM结果,热力学性能预测的 值超过0.91。本研究为加速CPRMMCs的创新和设计优化提供了一种有前景的方法。