使用机器学习方法对动态步态结果进行年龄组检测。

The detection of age groups by dynamic gait outcomes using machine learning approaches.

机构信息

Center for Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.

Department of Neurology, University Hospital Schleswig-Holstein, Christian-Albrechts-Universität Kiel, Kiel, Germany.

出版信息

Sci Rep. 2020 Mar 10;10(1):4426. doi: 10.1038/s41598-020-61423-2.

Abstract

Prevalence of gait impairments increases with age and is associated with mobility decline, fall risk and loss of independence. For geriatric patients, the risk of having gait disorders is even higher. Consequently, gait assessment in the clinics has become increasingly important. The purpose of the present study was to classify healthy young-middle aged, older adults and geriatric patients based on dynamic gait outcomes. Classification performance of three supervised machine learning methods was compared. From trunk 3D-accelerations of 239 subjects obtained during walking, 23 dynamic gait outcomes were calculated. Kernel Principal Component Analysis (KPCA) was applied for dimensionality reduction of the data for Support Vector Machine (SVM) classification. Random Forest (RF) and Artificial Neural Network (ANN) were applied to the 23 gait outcomes without prior data reduction. Classification accuracy of SVM was 89%, RF accuracy was 73%, and ANN accuracy was 90%. Gait outcomes that significantly contributed to classification included: Root Mean Square (Anterior-Posterior, Vertical), Cross Entropy (Medio-Lateral, Vertical), Lyapunov Exponent (Vertical), step regularity (Vertical) and gait speed. ANN is preferable due to the automated data reduction and significant gait outcome identification. For clinicians, these gait outcomes could be used for diagnosing subjects with mobility disabilities, fall risk and to monitor interventions.

摘要

步态障碍的发生率随年龄增长而增加,并与活动能力下降、跌倒风险和丧失独立性有关。对于老年患者,发生步态障碍的风险更高。因此,临床中的步态评估变得越来越重要。本研究旨在基于动态步态结果对健康的中青年、老年人和老年患者进行分类。比较了三种有监督机器学习方法的分类性能。从 239 名受试者行走过程中的躯干 3D 加速度中计算了 23 项动态步态结果。核主成分分析(KPCA)用于支持向量机(SVM)分类的数据降维。随机森林(RF)和人工神经网络(ANN)应用于 23 项步态结果,而无需预先进行数据降维。SVM 的分类准确率为 89%,RF 的准确率为 73%,ANN 的准确率为 90%。对分类有显著贡献的步态结果包括:均方根(前-后、垂直)、交叉熵(中-侧、垂直)、李雅普诺夫指数(垂直)、步长规则性(垂直)和步态速度。由于自动数据降维和显著的步态结果识别,ANN 更可取。对于临床医生,这些步态结果可用于诊断活动能力障碍、跌倒风险的患者,并用于监测干预措施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec36/7064519/1eecb8193d48/41598_2020_61423_Fig2_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索