New Hope Fertility Center Mexico, Research and Development, Guadalajara, PC, 44630, Mexico.
Universidad de Guadalajara, Departamento de Ciencias Computacionales, Guadalajara, PC, 44430, Mexico.
Sci Rep. 2020 Mar 10;10(1):4394. doi: 10.1038/s41598-020-61357-9.
Assessing the viability of a blastosyst is still empirical and non-reproducible nowadays. We developed an algorithm based on artificial vision and machine learning (and other classifiers) that predicts pregnancy using the beta human chorionic gonadotropin (b-hCG) test from both the morphology of an embryo and the age of the patients. We employed two high-quality databases with known pregnancy outcomes (n = 221). We created a system consisting of different classifiers that is feed with novel morphometric features extracted from the digital micrographs, along with other non-morphometric data to predict pregnancy. It was evaluated using five different classifiers: probabilistic bayesian, Support Vector Machines (SVM), deep neural network, decision tree, and Random Forest (RF), using a k-fold cross validation to assess the model's generalization capabilities. In the database A, the SVM classifier achieved an F1 score of 0.74, and AUC of 0.77. In the database B the RF classifier obtained a F1 score of 0.71, and AUC of 0.75. Our results suggest that the system is able to predict a positive pregnancy test from a single digital image, offering a novel approach with the advantages of using a small database, being highly adaptable to different laboratory settings, and easy integration into clinical practice.
目前,评估囊胚活力仍然是经验性的且不可复制的。我们开发了一种基于人工智能视觉和机器学习(以及其他分类器)的算法,该算法使用来自胚胎形态和患者年龄的β人绒毛膜促性腺激素(b-hCG)测试来预测妊娠。我们使用了两个具有已知妊娠结局的高质量数据库(n=221)。我们创建了一个系统,该系统由不同的分类器组成,这些分类器通过从数字显微照片中提取新的形态特征以及其他非形态特征来预测妊娠。我们使用概率贝叶斯、支持向量机(SVM)、深度神经网络、决策树和随机森林(RF)等五种不同的分类器,通过 k 折交叉验证来评估模型的泛化能力。在数据库 A 中,SVM 分类器的 F1 评分为 0.74,AUC 为 0.77。在数据库 B 中,RF 分类器的 F1 评分为 0.71,AUC 为 0.75。我们的结果表明,该系统能够从单个数字图像预测阳性妊娠试验,为使用小数据库、高度适应不同实验室环境以及易于整合到临床实践提供了一种新方法。