Suppr超能文献

使用具有增强型北斗优化算法的医学计算机视觉辅助Swin Transformer进行胚胎发育和形态的异常检测

Anomaly Detection in Embryo Development and Morphology Using Medical Computer Vision-Aided Swin Transformer with Boosted Dipper-Throated Optimization Algorithm.

作者信息

Mazroa Alanoud Al, Maashi Mashael, Said Yahia, Maray Mohammed, Alzahrani Ahmad A, Alkharashi Abdulwhab, Al-Sharafi Ali M

机构信息

Department of Information Systems, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University (PNU), P.O. Box 84428, Riyadh 11671, Saudi Arabia.

Department of Software Engineering, College of Computer and Information Sciences, King Saud University, P.O. Box 103786, Riyadh 11543, Saudi Arabia.

出版信息

Bioengineering (Basel). 2024 Oct 18;11(10):1044. doi: 10.3390/bioengineering11101044.

Abstract

Infertility affects a significant number of humans. A supported reproduction technology was verified to ease infertility problems. In vitro fertilization (IVF) is one of the best choices, and its success relies on the preference for a higher-quality embryo for transmission. These have been normally completed physically by testing embryos in a microscope. The traditional morphological calculation of embryos shows predictable disadvantages, including effort- and time-consuming and expected risks of bias related to individual estimations completed by specific embryologists. Different computer vision (CV) and artificial intelligence (AI) techniques and devices have been recently applied in fertility hospitals to improve efficacy. AI addresses the imitation of intellectual performance and the capability of technologies to simulate cognitive learning, thinking, and problem-solving typically related to humans. Deep learning (DL) and machine learning (ML) are advanced AI algorithms in various fields and are considered the main algorithms for future human assistant technology. This study presents an Embryo Development and Morphology Using a Computer Vision-Aided Swin Transformer with a Boosted Dipper-Throated Optimization (EDMCV-STBDTO) technique. The EDMCV-STBDTO technique aims to accurately and efficiently detect embryo development, which is critical for improving fertility treatments and advancing developmental biology using medical CV techniques. Primarily, the EDMCV-STBDTO method performs image preprocessing using a bilateral filter (BF) model to remove the noise. Next, the swin transformer method is implemented for the feature extraction technique. The EDMCV-STBDTO model employs the variational autoencoder (VAE) method to classify human embryo development. Finally, the hyperparameter selection of the VAE method is implemented using the boosted dipper-throated optimization (BDTO) technique. The efficiency of the EDMCV-STBDTO method is validated by comprehensive studies using a benchmark dataset. The experimental result shows that the EDMCV-STBDTO method performs better than the recent techniques.

摘要

不孕症影响着相当数量的人。一种辅助生殖技术已被证实可以缓解不孕问题。体外受精(IVF)是最佳选择之一,其成功依赖于选择更高质量的胚胎进行移植。这些通常是通过在显微镜下检测胚胎来人工完成的。传统的胚胎形态学计算存在可预见的缺点,包括耗时费力以及与特定胚胎学家进行的个体评估相关的预期偏差风险。最近,不同的计算机视觉(CV)和人工智能(AI)技术及设备已应用于生育医院以提高效率。人工智能致力于模仿智能行为以及技术模拟通常与人类相关的认知学习、思考和解决问题的能力。深度学习(DL)和机器学习(ML)是各个领域的先进人工智能算法,被认为是未来人类辅助技术的主要算法。本研究提出了一种使用计算机视觉辅助的带有增强勺喉优化(EDMCV - STBDTO)技术的Swin Transformer进行胚胎发育和形态学分析的方法。EDMCV - STBDTO技术旨在准确、高效地检测胚胎发育,这对于使用医学计算机视觉技术改善生育治疗和推进发育生物学至关重要。首先,EDMCV - STBDTO方法使用双边滤波器(BF)模型进行图像预处理以去除噪声。接下来,采用Swin Transformer方法进行特征提取。EDMCV - STBDTO模型使用变分自编码器(VAE)方法对人类胚胎发育进行分类。最后,使用增强勺喉优化(BDTO)技术对VAE方法进行超参数选择。通过使用基准数据集的综合研究验证了EDMCV - STBDTO方法的效率。实验结果表明,EDMCV - STBDTO方法比最近的技术表现更好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4521/11504009/45d3a8fd431c/bioengineering-11-01044-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验