Rigosi Albert F, Patel Dinesh, Marzano Martina, Kruskopf Mattias, Hill Heather M, Jin Hanbyul, Hu Jiuning, Walker Angela R Hight, Ortolano Massimo, Callegaro Luca, Liang Chi-Te, Newell David B
National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA.
Department of Physics, National Taiwan University, Taipei 10617, Taiwan.
Carbon N Y. 2019;154. doi: 10.1016/j.carbon.2019.08.002.
We have demonstrated the millimeter-scale fabrication of monolayer epitaxial graphene junction devices using simple ultraviolet photolithography, thereby significantly reducing device processing time compared to that of electron beam lithography typically used for obtaining sharp junctions. This work presents measurements yielding nonconventional, fractional multiples of the typical quantized Hall resistance at = 2 ( ≈ 12906 Ω) that take the form: . Here, and have been observed to take on values such 1, 2, 3, and 5 to form various coefficients of Additionally, we provide a framework for exploring future device configurations using the LTspice circuit simulator as a guide to understand the abundance of available fractions one may be able to measure. These results support the potential for drastically simplifying device processing time and may be used for many other two-dimensional materials.
我们已经展示了使用简单的紫外光刻技术来制造毫米级的单层外延石墨烯结器件,从而与通常用于获得尖锐结的电子束光刻相比,显著减少了器件加工时间。这项工作展示了一些测量结果,这些结果在(h/e^2)((h/e^2\approx12906\Omega))处产生了非传统的、典型量子化霍尔电阻的分数倍数,其形式为: 。在这里,已观察到(m)和(n)取值为1、2、3和5,以形成各种(h/ne^2)系数。此外,我们提供了一个框架,以LTspice电路模拟器为指导来探索未来的器件配置,从而理解人们可能能够测量的大量可用分数。这些结果支持了大幅简化器件加工时间的潜力,并且可用于许多其他二维材料。