Suppr超能文献

基于深度学习的心脏电影磁共振图像左心室功能全自动定量分析方法:一项多厂家、多中心研究。

Deep Learning-based Method for Fully Automatic Quantification of Left Ventricle Function from Cine MR Images: A Multivendor, Multicenter Study.

机构信息

From the Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands (Q.T., E.H.M.P., D.P.S., A.d.R., H.J.L., R.J.v.d.G.); Department of Electrical Engineering, Fudan University, Shanghai, China (W.Y., Y.W.); Multidisciplinary Cardiovascular Research Centre & Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, England (P.G., S.P.); Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (L.H., L.X.); and Departments of Cardiology (M.S.) and Radiology (J.T.), Institute for Clinical and Experimental Medicine, Prague, Czech Republic.

出版信息

Radiology. 2019 Jan;290(1):81-88. doi: 10.1148/radiol.2018180513. Epub 2018 Oct 9.

Abstract

Purpose To develop a deep learning-based method for fully automated quantification of left ventricular (LV) function from short-axis cine MR images and to evaluate its performance in a multivendor and multicenter setting. Materials and Methods This retrospective study included cine MRI data sets obtained from three major MRI vendors in four medical centers from 2008 to 2016. Three convolutional neural networks (CNNs) with the U-NET architecture were trained on data sets of increasing variability: (a) a single-vendor, single-center, homogeneous cohort of 100 patients (CNN1); (b) a single-vendor, multicenter, heterogeneous cohort of 200 patients (CNN2); and (c) a multivendor, multicenter, heterogeneous cohort of 400 patients (CNN3). All CNNs were tested on an independent multivendor, multicenter data set of 196 patients. CNN performance was evaluated with respect to the manual annotations from three experienced observers in terms of (a) LV detection accuracy, (b) LV segmentation accuracy, and (c) LV functional parameter accuracy. Automatic and manual results were compared with the paired Wilcoxon test, Pearson correlation, and Bland-Altman analysis. Results CNN3 achieved the highest performance on the independent testing data set. The average perpendicular distance compared with manual analysis was 1.1 mm ± 0.3 for CNN3, compared with 1.5 mm ± 1.0 for CNN1 (P < .05) and 1.3 mm ± 0.6 for CNN2 (P < .05). The LV function parameters derived from CNN3 showed a high correlation (r ≥ 0.98) and agreement with those obtained by experts for data sets from different vendors and centers. Conclusion A deep learning-based method trained on a data set with high variability can achieve fully automated and accurate cine MRI analysis on multivendor, multicenter cine MRI data. © RSNA, 2018 See also the editorial by Colletti in this issue.

摘要

目的 开发一种基于深度学习的方法,用于从短轴电影磁共振图像中全自动量化左心室 (LV) 功能,并在多供应商和多中心环境中评估其性能。

材料与方法 本回顾性研究纳入了 2008 年至 2016 年来自四个医学中心的三个主要磁共振成像 (MRI) 供应商的电影 MRI 数据集。三个具有 U-NET 架构的卷积神经网络 (CNN) 在数据集中进行了训练,这些数据集具有越来越大的可变性:(a) 来自单一供应商、单一中心、同质队列的 100 例患者 (CNN1);(b) 来自单一供应商、多中心、异质队列的 200 例患者 (CNN2);和 (c) 多供应商、多中心、异质队列的 400 例患者 (CNN3)。所有 CNN 均在一个独立的多供应商、多中心的 196 例患者数据集上进行了测试。使用来自三位经验丰富的观察者的手动注释,从三个方面评估 CNN 性能:(a) LV 检测准确性,(b) LV 分割准确性,和 (c) LV 功能参数准确性。自动和手动结果与配对 Wilcoxon 检验、Pearson 相关分析和 Bland-Altman 分析进行了比较。

结果 CNN3 在独立测试数据集上取得了最高的性能。与手动分析相比,CNN3 的平均垂直距离为 1.1mm±0.3,而 CNN1 为 1.5mm±1.0(P<0.05),CNN2 为 1.3mm±0.6(P<0.05)。从不同供应商和中心获得的 CNN3 衍生的 LV 功能参数显示出高度的相关性(r≥0.98)和一致性。

结论 在具有高可变性的数据集上训练的基于深度学习的方法可以对多供应商、多中心电影 MRI 数据进行全自动、准确的电影 MRI 分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验