Suppr超能文献

使用深度神经网络和肺部超声表面波弹性成像预测间质性肺疾病患者和健康受试者的肺质量密度。

Predicting lung mass density of patients with interstitial lung disease and healthy subjects using deep neural network and lung ultrasound surface wave elastography.

作者信息

Zhou Boran, Bartholmai Brian J, Kalra Sanjay, Zhang Xiaoming

机构信息

Department of Radiology, Mayo Clinic, USA.

Department of Pulmonary and Critical Care Medicine, Mayo Clinic, USA.

出版信息

J Mech Behav Biomed Mater. 2020 Apr;104:103682. doi: 10.1016/j.jmbbm.2020.103682. Epub 2020 Feb 7.

Abstract

The Hounsfield unit (HU) obtained from high resolution computed tomography (HRCT) has been used to assess lung pathology. However, lung mass density has not been quantified in vivo noninvasively. The objective of this study was to develop a method for analyzing lung mass density of superficial lung tissue of patients with interstitial lung disease (ILD) and healthy subjects using a deep neural network (DNN) and lung ultrasound surface wave elastography (LUSWE). Surface wave speeds at three vibration frequencies (100, 150 and 200 Hz) from LUSWE and a pulmonary function test (PFT) including predicted forced expiratory volume (FEV1% pre) and ratio of forced expiratory volume to forced vital capacity (FEV1%/FVC%) were used. Predefined lung mass densities based on the HU for ILD patients and healthy subjects (77 in total) were also used to train the DNN model. The DNN was composed of four hidden layers of 1024 neurons for each layer and trained for 80 epochs with a batch size of 20. The learning rate was 0.001. Performances of two types of activation functions in the DNN, rectified linear activation unit (ReLU) and exponential linear unit (ELU), as well as, machine learning models (support vector regression, random forest, Adaboost) were evaluated. The test dataset of wave speeds, FEV1% pre and FEV%/FVC%, was used to predict lung mass density. The results showed that predictions using a DNN with ELU obtained a comparatively better performance in the testing dataset (accuracy = 0.89) than those of DNN with ReLU or machine learning models. This method may be useful to noninvasively analyze lung mass density by using the DNN model together with the measurements from LUSWE and PFT.

摘要

从高分辨率计算机断层扫描(HRCT)获得的亨氏单位(HU)已被用于评估肺部病变。然而,肺肿块密度尚未在体内进行非侵入性定量。本研究的目的是开发一种使用深度神经网络(DNN)和肺超声表面波弹性成像(LUSWE)分析间质性肺疾病(ILD)患者和健康受试者浅表肺组织肺肿块密度的方法。使用了来自LUSWE的三个振动频率(100、150和200Hz)的表面波速度以及包括预测用力呼气量(FEV1% pre)和用力呼气量与用力肺活量之比(FEV1%/FVC%)的肺功能测试(PFT)。还使用了基于ILD患者和健康受试者(共77例)的HU预定义肺肿块密度来训练DNN模型。DNN由四个隐藏层组成,每层有1024个神经元,并以20的批量大小训练80个轮次。学习率为0.001。评估了DNN中两种激活函数,即整流线性激活单元(ReLU)和指数线性单元(ELU)以及机器学习模型(支持向量回归、随机森林、Adaboost)的性能。使用波速、FEV1% pre和FEV%/FVC%的测试数据集来预测肺肿块密度。结果表明,在测试数据集中,使用带有ELU的DNN进行的预测(准确率 = 0.89)比使用带有ReLU的DNN或机器学习模型的预测表现更好。该方法通过将DNN模型与LUSWE和PFT的测量结果结合使用,可能有助于非侵入性地分析肺肿块密度。

相似文献

5
Lung Ultrasound Surface Wave Elastography for Assessing Interstitial Lung Disease.肺部超声表面波弹性成像评估间质性肺疾病。
IEEE Trans Biomed Eng. 2019 May;66(5):1346-1352. doi: 10.1109/TBME.2018.2872907. Epub 2018 Oct 1.
7
Lung Ultrasound Surface Wave Elastography: A Pilot Clinical Study.肺部超声表面波弹性成像:一项初步临床研究。
IEEE Trans Ultrason Ferroelectr Freq Control. 2017 Sep;64(9):1298-1304. doi: 10.1109/TUFFC.2017.2707981.
9
An Ultrasound Surface Wave Technique for Assessing Skin and Lung Diseases.一种用于评估皮肤和肺部疾病的超声表面波技术。
Ultrasound Med Biol. 2018 Feb;44(2):321-331. doi: 10.1016/j.ultrasmedbio.2017.10.010. Epub 2017 Dec 1.

引用本文的文献

1
Spatial lung imaging in clinical and translational settings.临床和转化环境中的肺部空间成像。
Breathe (Sheff). 2024 Oct 1;20(3):230224. doi: 10.1183/20734735.0224-2023. eCollection 2024 Oct.
3
6
Ultrasound Elastography for Lung Disease Assessment.超声弹性成像在肺部疾病评估中的应用。
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Nov;67(11):2249-2257. doi: 10.1109/TUFFC.2020.3026536. Epub 2020 Sep 24.

本文引用的文献

6
An Ultrasound Surface Wave Technique for Assessing Skin and Lung Diseases.一种用于评估皮肤和肺部疾病的超声表面波技术。
Ultrasound Med Biol. 2018 Feb;44(2):321-331. doi: 10.1016/j.ultrasmedbio.2017.10.010. Epub 2017 Dec 1.
7
Lung Ultrasound Surface Wave Elastography: A Pilot Clinical Study.肺部超声表面波弹性成像:一项初步临床研究。
IEEE Trans Ultrason Ferroelectr Freq Control. 2017 Sep;64(9):1298-1304. doi: 10.1109/TUFFC.2017.2707981.
9
Prognosis in heart failure: look at the lungs.心力衰竭的预后:观察肺部情况。
Eur J Heart Fail. 2015 Nov;17(11):1086-8. doi: 10.1002/ejhf.423. Epub 2015 Oct 16.
10
A mechanical argument for the differential performance of coronary artery grafts.冠状动脉移植差异表现的力学观点。
J Mech Behav Biomed Mater. 2016 Feb;54:93-105. doi: 10.1016/j.jmbbm.2015.09.017. Epub 2015 Sep 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验