Suppr超能文献

基于化身的患者监测中信息传递改善的相关机制:多中心比较性眼动追踪研究

The Mechanisms Responsible for Improved Information Transfer in Avatar-Based Patient Monitoring: Multicenter Comparative Eye-Tracking Study.

作者信息

Tscholl David Werner, Rössler Julian, Handschin Lucas, Seifert Burkhardt, Spahn Donat R, Nöthiger Christoph B

机构信息

Institute of Anesthesiology, University Hospital Zurich, Zurich, Switzerland.

Department of Biostatistics, Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland.

出版信息

J Med Internet Res. 2020 Mar 16;22(3):e15070. doi: 10.2196/15070.

Abstract

BACKGROUND

Patient monitoring is central to perioperative and intensive care patient safety. Current state-of-the-art monitors display vital signs as numbers and waveforms. Visual Patient technology creates an easy-to-interpret virtual patient avatar model that displays vital sign information as it would look in a real-life patient (eg, avatar changes skin color from healthy to cyanotic depending on oxygen saturation). In previous studies, anesthesia providers using Visual Patient perceived more vital signs during short glances than with conventional monitoring.

OBJECTIVE

We aimed to study the deeper mechanisms underlying information perception in conventional and avatar-based monitoring.

METHODS

In this prospective, multicenter study with a within-subject design, we showed 32 anesthesia providers four 3- and 10-second monitoring scenarios alternatingly as either routine conventional or avatar-based in random sequence. All participants observed the same scenarios with both technologies and reported the vital sign status after each scenario. Using eye-tracking, we evaluated which vital signs the participants had visually fixated (ie, could have potentially read and perceived) during a scenario. We compared the frequencies and durations of participants' visual fixations of vital signs between the two technologies.

RESULTS

Participants visually fixated more vital signs per scenario in avatar-based monitoring (median 10, IQR 9-11 versus median 6, IQR 4-8, P<.001; median of differences=3, 95% CI 3-4). In multivariable linear regression, monitoring technology (conventional versus avatar-based monitoring, difference=-3.3, P<.001) was an independent predictor of the number of visually fixated vital signs. The difference was less prominent in the longer (10-second) scenarios (difference=-1.5, P=.04). Study center, profession, gender, and scenario order did not influence the differences between methods. In all four scenarios, the participants visually fixated 9 of 11 vital signs statistically significantly longer using the avatar (all P<.001). Four critical vital signs (pulse rate, blood pressure, oxygen saturation, and respiratory rate) were visible almost the entire time of a scenario with the avatar; these were only visible for fractions of the observations with conventional monitoring. Visual fixation of a certain vital sign was associated with the correct perception of that vital sign in both technologies (avatar: phi coefficient=0.358; conventional monitoring: phi coefficient=0.515, both P<.001).

CONCLUSIONS

This eye-tracking study uncovered that the way the avatar-based technology integrates the vital sign information into a virtual patient model enabled parallel perception of multiple vital signs and was responsible for the improved information transfer. For example, a single look at the avatar's body can provide information about: pulse rate (pulsation frequency), blood pressure (pulsation intensity), oxygen saturation (skin color), neuromuscular relaxation (extremities limp or stiff), and body temperature (heatwaves or ice crystals). This study adds a new and higher level of empirical evidence about why avatar-based monitoring improves vital sign perception compared with conventional monitoring.

摘要

背景

患者监测是围手术期和重症监护中保障患者安全的核心环节。当前的先进监测设备以数字和波形形式显示生命体征。可视化患者技术创建了一个易于解读的虚拟患者化身模型,该模型以现实患者身上生命体征的呈现方式来展示相关信息(例如,化身会根据血氧饱和度变化,使皮肤颜色从健康变为青紫)。在先前的研究中,使用可视化患者技术的麻醉医生在短暂扫视时比使用传统监测方式能察觉到更多生命体征。

目的

我们旨在研究传统监测和基于化身的监测中信息感知的深层机制。

方法

在这项采用受试者内设计的前瞻性多中心研究中,我们以随机顺序向32名麻醉医生交替展示四个3秒和10秒的监测场景,场景分别为常规监测或基于化身的监测。所有参与者使用两种技术观察相同的场景,并在每个场景后报告生命体征状态。通过眼动追踪,我们评估参与者在一个场景中视觉上注视(即有可能读取和感知到)了哪些生命体征。我们比较了两种技术下参与者对生命体征的视觉注视频率和持续时间。

结果

在基于化身的监测中,参与者在每个场景中视觉上注视到的生命体征更多(中位数为10,四分位间距为9 - 11;而在传统监测中中位数为6,四分位间距为4 - 8,P <.001;差异中位数 = 3,95%置信区间为3 - 4)。在多变量线性回归中,监测技术(传统监测与基于化身的监测,差异 = -3.3,P <.001)是视觉注视到的生命体征数量的独立预测因素。在较长(10秒)的场景中,这种差异不太显著(差异 = -1.5,P =.04)。研究中心、职业、性别和场景顺序均未影响两种方法之间的差异。在所有四个场景中,参与者使用化身时,对11项生命体征中的9项视觉注视时间在统计学上显著更长(所有P <.001)。四个关键生命体征(脉搏率、血压、血氧饱和度和呼吸频率)在使用化身的场景中几乎在整个观察期间都可见;而在传统监测中,这些生命体征仅在部分观察时段可见。在两种技术中,对某个生命体征的视觉注视都与对该生命体征的正确感知相关(化身:phi系数 = 0.358;传统监测:phi系数 = 0.515,两者P <.001)。

结论

这项眼动追踪研究发现,基于化身的技术将生命体征信息整合到虚拟患者模型中的方式能够使人们并行感知多个生命体征,并有助于改善信息传递。例如,只需看一眼化身的身体就能获取以下信息:脉搏率(搏动频率)、血压(搏动强度)、血氧饱和度(皮肤颜色)、神经肌肉松弛程度(四肢松弛或僵硬)以及体温(热浪或冰晶)。本研究为基于化身的监测相比传统监测为何能改善生命体征感知提供了新的、更高层次的实证依据。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验