Faria Sara I, Teixeira-Santos Rita, Romeu Maria J, Morais João, Vasconcelos Vitor, Mergulhão Filipe J
LEPABE-Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
CIIMAR-Interdisciplinar Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal.
Polymers (Basel). 2020 Mar 12;12(3):653. doi: 10.3390/polym12030653.
Understanding the conditions affecting cyanobacterial biofilm development is crucial to develop new antibiofouling strategies and decrease the economic and environmental impact of biofilms in marine settings. In this study, we investigated the relative importance of shear forces and surface hydrophobicity on biofilm development by two coccoid cyanobacteria with different biofilm formation capacities. The strong biofilm-forming was used along with the weaker biofilm-forming sp. Biofilms were developed in defined hydrodynamic conditions using glass (a model hydrophilic surface) and a polymeric epoxy coating (a hydrophobic surface) as substrates. Biofilms developed in both surfaces at lower shear conditions contained a higher number of cells and presented higher values for wet weight, thickness, and chlorophyll content. The impact of hydrodynamics on biofilm development was generally stronger than the impact of surface hydrophobicity, but a combined effect of these two parameters strongly affected biofilm formation for the weaker biofilm-producing organism. The antibiofilm performance of the polymeric coating was confirmed at the hydrodynamic conditions prevailing in ports. Shear forces were shown to have a profound impact on biofilm development in marine settings regardless of the fouling capacity of the existing flora and the hydrophobicity of the surface.
了解影响蓝藻生物膜形成的条件对于开发新的防污策略以及减少生物膜在海洋环境中的经济和环境影响至关重要。在本研究中,我们调查了剪切力和表面疏水性对两种具有不同生物膜形成能力的球状蓝藻生物膜形成的相对重要性。将形成生物膜能力强的[具体名称未给出]与形成生物膜能力较弱的[具体名称未给出]一起使用。使用玻璃(一种亲水性表面模型)和聚合物环氧涂层(一种疏水性表面)作为底物,在特定的流体动力学条件下培养生物膜。在较低剪切条件下在两种表面上形成的生物膜含有更多的细胞,并且在湿重、厚度和叶绿素含量方面呈现出更高的值。流体动力学对生物膜形成的影响通常比表面疏水性的影响更强,但这两个参数的综合作用对生物膜形成能力较弱的生物体的生物膜形成有强烈影响。在港口普遍存在的流体动力学条件下,证实了聚合物涂层的抗生物膜性能。结果表明,无论现有菌群的附着能力和表面的疏水性如何,剪切力对海洋环境中的生物膜形成都有深远影响。