Benhajali Yassine, Badhwar AmanPreet, Spiers Helen, Urchs Sebastian, Armoza Jonathan, Ong Thomas, Pérusse Daniel, Bellec Pierre
Département d'Anthropologie, Université de Montréal, Montreal, QC, Canada.
Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montreal, QC, Canada.
Front Neuroinform. 2020 Feb 28;14:7. doi: 10.3389/fninf.2020.00007. eCollection 2020.
Automatic alignment of brain anatomy in a standard space is a key step when processing magnetic resonance imaging for group analyses. Such brain registration is prone to failure, and the results are therefore typically reviewed visually to ensure quality. There is however no standard, validated protocol available to perform this visual quality control (QC). We propose here a standardized QC protocol for brain registration, with minimal training overhead and no required knowledge of brain anatomy. We validated the reliability of three-level QC ratings (OK, Maybe, Fail) across different raters. Nine experts each rated = 100 validation images, and reached moderate to good agreement (kappa from 0.4 to 0.68, average of 0.54 ± 0.08), with the highest agreement for "Fail" images (Dice from 0.67 to 0.93, average of 0.8 ± 0.06). We then recruited volunteers through the Zooniverse crowdsourcing platform, and extracted a consensus panel rating for both the Zooniverse raters ( = 41) and the expert raters. The agreement between expert and Zooniverse panels was high (kappa = 0.76). Overall, our protocol achieved a good reliability when performing a two level assessment (Fail vs. OK/Maybe) by an individual rater, or aggregating multiple three-level ratings (OK, Maybe, Fail) from a panel of experts (3 minimum) or non-experts (15 minimum). Our brain registration QC protocol will help standardize QC practices across laboratories, improve the consistency of reporting of QC in publications, and will open the way for QC assessment of large datasets which could be used to train automated QC systems.
在对磁共振成像进行组分析时,将脑解剖结构自动对齐到标准空间是关键步骤。这种脑配准容易失败,因此通常要对结果进行视觉检查以确保质量。然而,目前尚无用于执行这种视觉质量控制(QC)的标准、经过验证的方案。我们在此提出一种用于脑配准的标准化QC方案,其训练成本最低,且无需脑解剖学知识。我们验证了不同评分者对三级QC评级(合格、可能、不合格)的可靠性。九位专家每人对100张验证图像进行评分,达成了中等至良好的一致性(kappa值从0.4到0.68,平均为0.54±0.08),对“不合格”图像的一致性最高(Dice值从0.67到0.93,平均为0.8±0.06)。然后,我们通过Zooniverse众包平台招募志愿者,并提取了Zooniverse评分者(n = 41)和专家评分者的共识小组评分。专家小组和Zooniverse小组之间的一致性很高(kappa = 0.76)。总体而言,我们的方案在由单个评分者进行两级评估(不合格与合格/可能),或汇总来自专家小组(至少3人)或非专家小组(至少15人)的多个三级评分(合格、可能、不合格)时,都具有良好的可靠性。我们的脑配准QC方案将有助于规范各实验室的QC实践,提高出版物中QC报告的一致性,并为大型数据集的QC评估开辟道路,这些数据集可用于训练自动化QC系统。