Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium.
Walloon Excellence in Life sciences and Biotechnology (WELBIO), 1300 Wavre, Belgium.
Cells. 2020 Mar 14;9(3):716. doi: 10.3390/cells9030716.
Adhesion to extracellular matrix proteins is an important first step in host invasion, employed by many bacterial pathogens. In mycobacteria, the secreted Ag85 complex proteins, involved in the synthesis of the cell envelope, are known to bind to fibronectin (Fn) through molecular forces that are currently unknown. In this study, single-molecule force spectroscopy is used to study the strength, kinetics and thermodynamics of the Ag85-Fn interaction, focusing on the multidrug-resistant species. Single Ag85 proteins bind Fn with a strength of ~75 pN under moderate tensile loading, which compares well with the forces reported for other Fn-binding proteins. The binding specificity is demonstrated by using free Ag85 and Fn peptides with active binding sequences. The Ag85-Fn rupture force increases with mechanical stress (i.e., loading rate) according to the Friddle-Noy-de Yoreo theory. From this model, we extract thermodynamic parameters that are in good agreement with previous affinity determinations by surface plasmon resonance. Strong bonds (up to ~500 pN) are observed under high tensile loading, which may favor strong mycobacterial attachment in the lung where cells are exposed to high shear stress or during hematogenous spread which leads to a disseminated infection. Our results provide new insight into the pleiotropic functions of an important mycobacterial virulence factor that acts as a stress-sensitive adhesin.
细胞外基质蛋白的黏附是宿主入侵的重要第一步,许多细菌病原体都采用这种方式。在分枝杆菌中,参与细胞壁合成的分泌型 Ag85 复合物蛋白已知通过目前尚不清楚的分子力与纤维连接蛋白(Fn)结合。在这项研究中,单分子力谱技术被用于研究 Ag85-Fn 相互作用的强度、动力学和热力学,重点研究耐多药的分枝杆菌物种。在适度的拉伸负载下,单个 Ag85 蛋白与 Fn 的结合强度约为 75 pN,这与其他 Fn 结合蛋白报道的力值相当。通过使用具有活性结合序列的游离 Ag85 和 Fn 肽来证明结合特异性。Ag85-Fn 的断裂力根据 Friddle-Noy-de Yoreo 理论随机械应力(即加载速率)而增加。根据该模型,我们提取了热力学参数,这些参数与表面等离子体共振的先前亲和力测定结果非常吻合。在高拉伸负载下观察到强键(高达约 500 pN),这可能有利于细胞在肺部暴露于高剪切力或在导致播散性感染的血源性传播期间的分枝杆菌的牢固附着。我们的研究结果为一种重要的分枝杆菌毒力因子的多功能性提供了新的见解,该因子作为一种应激敏感黏附素发挥作用。