Suppr超能文献

使用深度学习开发危重症患者院内心脏骤停的实时风险预测模型:回顾性研究

Development of a Real-Time Risk Prediction Model for In-Hospital Cardiac Arrest in Critically Ill Patients Using Deep Learning: Retrospective Study.

作者信息

Kim Junetae, Park Yu Rang, Lee Jeong Hoon, Lee Jae-Ho, Kim Young-Hak, Huh Jin Won

机构信息

Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Republic of Korea.

Cancer Data Center, National Cancer Control Institute, National Cancer Center, Goyang-si, Republic of Korea.

出版信息

JMIR Med Inform. 2020 Mar 18;8(3):e16349. doi: 10.2196/16349.

Abstract

BACKGROUND

Cardiac arrest is the most serious death-related event in intensive care units (ICUs), but it is not easily predicted because of the complex and time-dependent data characteristics of intensive care patients. Given the complexity and time dependence of ICU data, deep learning-based methods are expected to provide a good foundation for developing risk prediction models based on large clinical records.

OBJECTIVE

This study aimed to implement a deep learning model that estimates the distribution of cardiac arrest risk probability over time based on clinical data and assesses its potential.

METHODS

A retrospective study of 759 ICU patients was conducted between January 2013 and July 2015. A character-level gated recurrent unit with a Weibull distribution algorithm was used to develop a real-time prediction model. Fivefold cross-validation testing (training set: 80% and validation set: 20%) determined the consistency of model accuracy. The time-dependent area under the curve (TAUC) was analyzed based on the aggregation of 5 validation sets.

RESULTS

The TAUCs of the implemented model were 0.963, 0.942, 0.917, 0.875, 0.850, 0.842, and 0.761 before cardiac arrest at 1, 8, 16, 24, 32, 40, and 48 hours, respectively. The sensitivity was between 0.846 and 0.909, and specificity was between 0.923 and 0.946. The distribution of risk between the cardiac arrest group and the non-cardiac arrest group was generally different, and the difference rapidly increased as the time left until cardiac arrest reduced.

CONCLUSIONS

A deep learning model for forecasting cardiac arrest was implemented and tested by considering the cumulative and fluctuating effects of time-dependent clinical data gathered from a large medical center. This real-time prediction model is expected to improve patient's care by allowing early intervention in patients at high risk of unexpected cardiac arrests.

摘要

背景

心脏骤停是重症监护病房(ICU)中与死亡相关的最严重事件,但由于重症监护患者数据具有复杂且随时间变化的特征,因此难以预测。鉴于ICU数据的复杂性和时间依赖性,基于深度学习的方法有望为基于大型临床记录开发风险预测模型提供良好基础。

目的

本研究旨在实现一种深度学习模型,该模型可根据临床数据估计心脏骤停风险概率随时间的分布,并评估其潜力。

方法

对2013年1月至2015年7月期间的759例ICU患者进行回顾性研究。使用具有威布尔分布算法的字符级门控循环单元来开发实时预测模型。五折交叉验证测试(训练集:80%,验证集:20%)确定模型准确性的一致性。基于5个验证集的汇总分析时间依赖性曲线下面积(TAUC)。

结果

所实施模型在心脏骤停前1、8、16、24、32、40和48小时的TAUC分别为0.963、0.942、0.917、0.875、0.850、0.842和0.761。敏感性在0.846至0.909之间,特异性在0.923至0.946之间。心脏骤停组和非心脏骤停组之间的风险分布总体不同,并且随着距心脏骤停时间的减少,差异迅速增加。

结论

通过考虑从大型医疗中心收集的时间依赖性临床数据的累积和波动效应,实施并测试了一种用于预测心脏骤停的深度学习模型。这种实时预测模型有望通过对意外心脏骤停高危患者进行早期干预来改善患者护理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce40/7113801/731e64a1162b/medinform_v8i3e16349_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验