Department of Psychology.
Department of Information Technology, Analytics, and Operations.
Psychol Methods. 2020 Aug;25(4):496-515. doi: 10.1037/met0000259. Epub 2020 Mar 19.
Mediation analysis is an important approach for investigating causal pathways. One approach used in mediation analysis is the test of an indirect effect, which seeks to measure how the effect of an independent variable impacts an outcome variable through 1 or more mediators. However, in many situations the proposed tests of indirect effects, including popular confidence interval-based methods, tend to produce poor Type I error rates when mediation does not occur and, more generally, only allow dichotomous decisions of "not significant" or "significant" with regards to the statistical conclusion. To remedy these issues, we propose a new method, a likelihood ratio test (LRT), that uses nonlinear constraints in what we term the model-based constrained optimization (MBCO) procedure. The MBCO procedure (a) offers a more robust Type I error rate than existing methods; (b) provides a p value, which serves as a continuous measure of compatibility of data with the hypothesized null model (not just a dichotomous reject or fail-to-reject decision rule); (c) allows simple and complex hypotheses about mediation (i.e., 1 or more mediators; different mediational pathways); and (d) allows the mediation model to use observed or latent variables. The MBCO procedure is based on a structural equation modeling framework (even if latent variables are not specified) with specialized fitting routines, namely with the use of nonlinear constraints. We advocate using the MBCO procedure to test hypotheses about an indirect effect in addition to reporting a confidence interval to capture uncertainty about the indirect effect because this combination transcends existing methods. (PsycInfo Database Record (c) 2020 APA, all rights reserved).
中介分析是一种研究因果途径的重要方法。中介分析中使用的一种方法是间接效应检验,旨在衡量自变量对因变量的影响是通过一个或多个中介变量来实现的。然而,在许多情况下,所提出的中介效应检验,包括流行的基于置信区间的方法,当不存在中介时往往会产生较差的Ⅰ类错误率,而且更普遍的是,仅允许关于统计结论的“不显著”或“显著”的二分决策。为了解决这些问题,我们提出了一种新的方法,似然比检验(LRT),该方法在我们称之为基于模型的约束优化(MBCO)过程中使用非线性约束。MBCO 过程(a)提供了比现有方法更稳健的Ⅰ类错误率;(b)提供了 p 值,作为数据与假设的零模型相容性的连续度量(不仅仅是二分的拒绝或未拒绝决策规则);(c)允许对中介(即一个或多个中介;不同的中介途径)提出简单和复杂的假设;以及(d)允许中介模型使用观察到的或潜在的变量。MBCO 过程基于结构方程建模框架(即使没有指定潜在变量),具有专门的拟合例程,即使用非线性约束。我们主张除了报告置信区间以捕捉对间接效应的不确定性之外,使用 MBCO 过程来检验关于间接效应的假设,因为这种组合超越了现有方法。(PsycInfo 数据库记录(c)2020 APA,保留所有权利)。