Suppr超能文献

通过强制剥离和时间依赖性愈合揭示的神经元粘附的基本特征

Fundamental Characteristics of Neuron Adhesion Revealed by Forced Peeling and Time-Dependent Healing.

作者信息

Liu Haipei, Fang Chao, Gong Ze, Chang Raymond Chuen-Chung, Qian Jin, Gao Huajian, Lin Yuan

机构信息

Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China.

Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, and State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China.

出版信息

Biophys J. 2020 Apr 21;118(8):1811-1819. doi: 10.1016/j.bpj.2020.03.001. Epub 2020 Mar 7.

Abstract

A current bottleneck in the advance of neurophysics is the lack of reliable methods to quantitatively measure the interactions between neural cells and their microenvironment. Here, we present an experimental technique to probe the fundamental characteristics of neuron adhesion through repeated peeling of well-developed neurite branches on a substrate with an atomic force microscopy cantilever. At the same time, a total internal reflection fluorescence microscope is also used to monitor the activities of neural cell adhesion molecules (NCAMs) during detaching. It was found that NCAMs aggregate into clusters at the neurite-substrate interface, resulting in strong local attachment with an adhesion energy of ∼0.1 mJ/m and sudden force jumps in the recorded force-displacement curve. Furthermore, by introducing a healing period between two forced peelings, we showed that stable neurite-substrate attachment can be re-established in 2-5 min. These findings are rationalized by a stochastic model, accounting for the breakage and rebinding of NCAM-based molecular bonds along the interface, and provide new insights into the mechanics of neuron adhesion as well as many related biological processes including axon outgrowth and nerve regeneration.

摘要

神经物理学发展目前面临的一个瓶颈是缺乏可靠的方法来定量测量神经细胞与其微环境之间的相互作用。在此,我们提出一种实验技术,通过用原子力显微镜悬臂反复剥离基质上发育良好的神经突分支来探究神经元黏附的基本特征。同时,还使用全内反射荧光显微镜监测分离过程中神经细胞黏附分子(NCAM)的活性。研究发现,NCAM在神经突与基质的界面处聚集成簇,导致局部强烈附着,黏附能约为0.1 mJ/m ,并且在记录的力 - 位移曲线中出现力的突然跃升。此外,通过在两次强制剥离之间引入愈合期,我们发现稳定的神经突 - 基质附着可在2 - 5分钟内重新建立。这些发现通过一个随机模型得到合理解释,该模型考虑了基于NCAM的分子键沿界面的断裂和重新结合,并为神经元黏附的力学以及包括轴突生长和神经再生在内的许多相关生物学过程提供了新的见解。

相似文献

引用本文的文献

2
A mechanism-based theory of cellular and tissue plasticity.一种基于机制的细胞和组织可塑性理论。
Proc Natl Acad Sci U S A. 2023 Oct 31;120(44):e2305375120. doi: 10.1073/pnas.2305375120. Epub 2023 Oct 23.
6
Effect of Cyclic Stretch on Neuron Reorientation and Axon Outgrowth.周期性拉伸对神经元重新定向和轴突生长的影响。
Front Bioeng Biotechnol. 2020 Dec 14;8:597867. doi: 10.3389/fbioe.2020.597867. eCollection 2020.

本文引用的文献

1
Tension- and Adhesion-Regulated Retraction of Injured Axons.损伤轴突的张力和黏附调节回缩。
Biophys J. 2019 Jul 23;117(2):193-202. doi: 10.1016/j.bpj.2019.06.011. Epub 2019 Jun 20.
2
Cytoskeletal Mechanisms of Axonal Contractility.轴突收缩的细胞骨架机制。
Biophys J. 2018 Aug 21;115(4):713-724. doi: 10.1016/j.bpj.2018.07.007. Epub 2018 Jul 12.
5
Shifting the optimal stiffness for cell migration.改变细胞迁移的最佳刚度。
Nat Commun. 2017 May 22;8:15313. doi: 10.1038/ncomms15313.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验