Suppr超能文献

基于生成式嵌入预测个体抑郁症临床轨迹。

Predicting individual clinical trajectories of depression with generative embedding.

机构信息

Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich 8032, Switzerland.

Donders Institute for Brain, Cognition and Behaviour, Radbound University, Nijmegen, The Netherlands; Department of Neuroimaging, Institute of Psychiatry, King's College London, London, United Kingdom.

出版信息

Neuroimage Clin. 2020;26:102213. doi: 10.1016/j.nicl.2020.102213. Epub 2020 Feb 17.

Abstract

Patients with major depressive disorder (MDD) show heterogeneous treatment response and highly variable clinical trajectories: while some patients experience swift recovery, others show relapsing-remitting or chronic courses. Predicting individual clinical trajectories at an early stage is a key challenge for psychiatry and might facilitate individually tailored interventions. So far, however, reliable predictors at the single-patient level are absent. Here, we evaluated the utility of a machine learning strategy - generative embedding (GE) - which combines interpretable generative models with discriminative classifiers. Specifically, we used functional magnetic resonance imaging (fMRI) data of emotional face perception in 85 MDD patients from the NEtherlands Study of Depression and Anxiety (NESDA) who had been followed up over two years and classified into three subgroups with distinct clinical trajectories. Combining a generative model of effective (directed) connectivity with support vector machines (SVMs), we could predict whether a given patient would experience chronic depression vs. fast remission with a balanced accuracy of 79%. Gradual improvement vs. fast remission could still be predicted above-chance, but less convincingly, with a balanced accuracy of 61%. Generative embedding outperformed classification based on conventional (descriptive) features, such as functional connectivity or local activation estimates, which were obtained from the same data and did not allow for above-chance classification accuracy. Furthermore, predictive performance of GE could be assigned to a specific network property: the trial-by-trial modulation of connections by emotional content. Given the limited sample size of our study, the present results are preliminary but may serve as proof-of-concept, illustrating the potential of GE for obtaining clinical predictions that are interpretable in terms of network mechanisms. Our findings suggest that abnormal dynamic changes of connections involved in emotional face processing might be associated with higher risk of developing a less favorable clinical course.

摘要

患有重度抑郁症(MDD)的患者表现出不同的治疗反应和高度可变的临床轨迹:有些患者迅速康复,而有些患者则出现复发-缓解或慢性病程。在早期预测个体的临床轨迹是精神病学的一个关键挑战,可能有助于进行个体化干预。然而,到目前为止,还没有可靠的个体患者水平的预测因子。在这里,我们评估了一种机器学习策略-生成嵌入(GE)的效用,该策略将可解释的生成模型与判别分类器相结合。具体来说,我们使用了来自荷兰抑郁和焦虑研究(NESDA)的 85 名 MDD 患者的情绪面孔感知功能磁共振成像(fMRI)数据,这些患者在两年内进行了随访,并根据不同的临床轨迹分为三组。我们结合了有效(定向)连接的生成模型和支持向量机(SVMs),可以预测给定患者是否会经历慢性抑郁与快速缓解,平衡准确性为 79%。尽管如此,仍然可以以高于平均水平的准确度预测逐渐改善与快速缓解,平衡准确性为 61%。生成嵌入的表现优于基于常规(描述性)特征的分类,例如从相同数据获得的功能连接或局部激活估计,这些特征不允许获得高于平均水平的分类准确性。此外,GE 的预测性能可以归因于特定的网络属性:情绪内容对连接的逐次调制。考虑到我们研究的样本量有限,目前的结果是初步的,但可能作为概念验证,说明 GE 获得可根据网络机制进行解释的临床预测的潜力。我们的研究结果表明,涉及情绪面孔处理的连接的异常动态变化可能与发展出不太有利的临床病程的风险较高有关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b5b/7082217/80f0104b4502/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验