Suppr超能文献

利用生成式嵌入从静息态 fMRI 预测未来抑郁发作

Predicting future depressive episodes from resting-state fMRI with generative embedding.

机构信息

Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich 8032, Switzerland.

Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich 8032, Switzerland.

出版信息

Neuroimage. 2023 Jun;273:119986. doi: 10.1016/j.neuroimage.2023.119986. Epub 2023 Mar 22.

Abstract

After a first episode of major depressive disorder (MDD), there is substantial risk for a long-term remitting-relapsing course. Prevention and early interventions are thus critically important. Various studies have examined the feasibility of detecting at-risk individuals based on out-of-sample predictions about the future occurrence of depression. However, functional magnetic resonance imaging (fMRI) has received very little attention for this purpose so far. Here, we explored the utility of generative models (i.e. different dynamic causal models, DCMs) as well as functional connectivity (FC) for predicting future episodes of depression in never-depressed adults, using a large dataset (N = 906) of task-free ("resting state") fMRI data from the UK Biobank (UKB). Connectivity analyses were conducted using timeseries from pre-computed spatially independent components of different dimensionalities. Over a three-year period, 50% of selected participants showed indications of at least one depressive episode, while the other 50% did not. Using nested cross-validation for training and a held-out test set (80/20 split), we systematically examined the combination of 8 connectivity feature sets and 17 classifiers. We found that a generative embedding procedure based on combining regression DCM (rDCM) with a support vector machine (SVM) enabled the best predictions, both on the training set (0.63 accuracy, 0.66 area under the curve, AUC) and the test set (0.62 accuracy, 0.64 AUC; p < 0.001). However, on the test set, rDCM was only slightly superior to predictions based on FC (0.59 accuracy, 0.61 AUC). Interpreting model predictions based on SHAP (SHapley Additive exPlanations) values suggested that the most predictive connections were widely distributed and not confined to specific networks. Overall, our analyses suggest (i) ways of improving future fMRI-based generative embedding approaches for the early detection of individuals at-risk for depression and that (ii) achieving accuracies of clinical utility may require combination of fMRI with other data modalities.

摘要

在首次发生重度抑郁症(MDD)后,存在长期缓解-复发过程的重大风险。因此,预防和早期干预至关重要。各种研究已经检查了基于对未来抑郁发生的外推预测来检测高危个体的可行性。然而,到目前为止,功能磁共振成像(fMRI)在这方面受到的关注很少。在这里,我们使用来自英国生物银行(UKB)的大型无任务(“静息状态”)fMRI 数据集(N = 906),探索了生成模型(即不同的动态因果模型,DCM)以及功能连接(FC)在预测从未抑郁的成年人未来发作抑郁的效用。连接分析使用不同维度的预计算空间独立分量的时间序列进行。在三年期间,50%的选定参与者表现出至少一次抑郁发作的迹象,而另外 50%的参与者则没有。使用嵌套交叉验证进行训练和保留测试集(80/20 分割),我们系统地检查了 8 个连接特征集和 17 个分类器的组合。我们发现,基于回归 DCM(rDCM)与支持向量机(SVM)相结合的生成嵌入过程能够实现最佳预测,无论是在训练集(准确率 0.63,曲线下面积 0.66,AUC)还是测试集(准确率 0.62,AUC 0.64;p < 0.001)。然而,在测试集上,rDCM 仅略优于基于 FC 的预测(准确率 0.59,AUC 0.61)。基于 SHAP(SHapley Additive exPlanations)值解释模型预测表明,最具预测性的连接分布广泛,不限于特定网络。总体而言,我们的分析表明(i)改善未来基于 fMRI 的生成嵌入方法以早期检测有抑郁风险的个体的方法,以及(ii)达到临床实用性的准确性可能需要将 fMRI 与其他数据模式相结合。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验