Suppr超能文献

通过流形嵌入将低温电镜数据映射到状态连续体中时,在角空间中传播构象坐标。

Propagation of Conformational Coordinates Across Angular Space in Mapping the Continuum of States from Cryo-EM Data by Manifold Embedding.

机构信息

Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, New York 10032, United States.

Department of Physics, University of Wisconsin Milwaukee, 3135 North Maryland Avenue, Milwaukee, Wisconsin 53211, United States.

出版信息

J Chem Inf Model. 2020 May 26;60(5):2484-2491. doi: 10.1021/acs.jcim.9b01115. Epub 2020 Apr 2.

Abstract

Recent approaches to the study of biological molecules employ manifold learning to single-particle cryo-EM data sets to map the continuum of states of a molecule into a low-dimensional space spanned by eigenvectors or "conformational coordinates". This is done separately for each projection direction (PD) on an angular grid. One important step in deriving a consolidated map of occupancies, from which the free energy landscape of the molecule can be derived, is to propagate the conformational coordinates from a given choice of "anchor PD" across the entire angular space. Even when one eigenvector dominates, its sign might invert from one PD to the next. The propagation of the second eigenvector is particularly challenging when eigenvalues of the second and third eigenvector are closely matched, leading to occasional inversions in their ranking as we move across the angular grid. In the absence of a computational approach, this propagation across the angular space has been done thus far "by hand" using visual clues, thus greatly limiting the general use of the technique. In this work we have developed a method that is able to solve the propagation problem computationally, by using optical flow and a probabilistic graphical model. We demonstrate its utility by selected examples.

摘要

最近研究生物分子的方法采用多重学习来对单颗粒冷冻电镜数据集进行分析,以便将分子的连续状态映射到由特征向量或“构象坐标”所张成的低维空间中。这是在角网格的每个角度方向 (PD) 上分别进行的。从占据物的综合图谱中得出分子的自由能景观的一个重要步骤是从给定的“锚定 PD”传播构象坐标到整个角度空间。即使主导一个特征向量,它的符号也可能从一个 PD 到下一个 PD 反转。当第二个和第三个特征向量的特征值非常匹配时,第二个特征向量的传播特别具有挑战性,这导致在我们穿过角度网格时它们的排名偶尔会反转。在没有计算方法的情况下,到目前为止,这种在角度空间中的传播一直是通过使用视觉线索“手动”完成的,因此极大地限制了该技术的广泛使用。在这项工作中,我们开发了一种能够通过光流和概率图形模型进行计算求解传播问题的方法。我们通过选择的例子展示了它的实用性。

相似文献

5
Ensemble Reweighting Using Cryo-EM Particle Images.基于冷冻电镜粒子图像的集合再加权。
J Phys Chem B. 2023 Jun 22;127(24):5410-5421. doi: 10.1021/acs.jpcb.3c01087. Epub 2023 Jun 9.

引用本文的文献

本文引用的文献

5
Trajectories of the ribosome as a Brownian nanomachine.作为布朗运动纳米机器的核糖体轨迹。
Proc Natl Acad Sci U S A. 2014 Dec 9;111(49):17492-7. doi: 10.1073/pnas.1419276111. Epub 2014 Nov 24.
7
Conformations of macromolecules and their complexes from heterogeneous datasets.来自异构数据集的大分子及其复合物的构象
Philos Trans R Soc Lond B Biol Sci. 2014 Jul 17;369(1647):20130567. doi: 10.1098/rstb.2013.0567.
9
Nonlinear dimensionality reduction by locally linear embedding.通过局部线性嵌入进行非线性降维
Science. 2000 Dec 22;290(5500):2323-6. doi: 10.1126/science.290.5500.2323.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验