Suppr超能文献

体内组织工程血管移植物发育的计算生物化学 - 机械模型。

A computational bio-chemo-mechanical model of in vivo tissue-engineered vascular graft development.

机构信息

Department of Biomedical Engineering, Yale University, New Haven, CT, USA.

Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN, USA.

出版信息

Integr Biol (Camb). 2020 Apr 14;12(3):47-63. doi: 10.1093/intbio/zyaa004.

Abstract

Stenosis is the primary complication of current tissue-engineered vascular grafts used in pediatric congenital cardiac surgery. Murine models provide considerable insight into the possible mechanisms underlying this situation, but they are not efficient for identifying optimal changes in scaffold design or therapeutic strategies to prevent narrowing. In contrast, computational modeling promises to enable time- and cost-efficient examinations of factors leading to narrowing. Whereas past models have been limited by their phenomenological basis, we present a new mechanistic model that integrates molecular- and cellular-driven immuno- and mechano-mediated contributions to in vivo neotissue development within implanted polymeric scaffolds. Model parameters are inferred directly from in vivo measurements for an inferior vena cava interposition graft model in the mouse that are augmented by data from the literature. By complementing Bayesian estimation with identifiability analysis and simplex optimization, we found optimal parameter values that match model outputs with experimental targets and quantify variability due to measurement uncertainty. Utility is illustrated by parametrically exploring possible graft narrowing as a function of scaffold pore size, macrophage activity, and the immunomodulatory cytokine transforming growth factor beta 1 (TGF-β1). The model captures salient temporal profiles of infiltrating immune and synthetic cells and associated secretion of cytokines, proteases, and matrix constituents throughout neovessel evolution, and parametric studies suggest that modulating scaffold immunogenicity with early immunomodulatory therapies may reduce graft narrowing without compromising compliance.

摘要

狭窄是目前用于儿科先天性心脏病手术的组织工程血管移植物的主要并发症。鼠模型为理解这种情况的潜在机制提供了重要的见解,但它们在确定支架设计或治疗策略的最佳变化以防止狭窄方面效率不高。相比之下,计算建模有望实现对导致狭窄的因素进行高效、省时的检查。虽然过去的模型受到其现象学基础的限制,但我们提出了一种新的机制模型,该模型将分子和细胞驱动的免疫和机械介导作用整合到植入的聚合物支架内的体内新组织发育中。模型参数是直接从体内测量值推断出来的,这些测量值是通过补充来自文献的数据对小鼠下腔静脉间置移植物模型进行的。通过将贝叶斯估计与可识别性分析和单纯形优化相结合,我们找到了与实验目标匹配的最佳参数值,并量化了由于测量不确定性引起的变异性。通过参数化探索支架孔径、巨噬细胞活性和免疫调节细胞因子转化生长因子-β1 (TGF-β1) 对移植物狭窄的影响,说明了模型的实用性。该模型捕获了在整个新血管进化过程中浸润性免疫和合成细胞及其相关细胞因子、蛋白酶和基质成分分泌的重要时间分布,参数研究表明,早期免疫调节治疗可以调节支架的免疫原性,从而减少移植物狭窄,而不会影响顺应性。

相似文献

2
Optimization of Tissue-Engineered Vascular Graft Design Using Computational Modeling.利用计算建模优化组织工程血管移植物设计。
Tissue Eng Part C Methods. 2019 Oct;25(10):561-570. doi: 10.1089/ten.TEC.2019.0086. Epub 2019 Sep 3.

引用本文的文献

3
Hemodynamics and Wall Mechanics of Vascular Graft Failure.血管移植物失效的血液动力学和壁力学。
Arterioscler Thromb Vasc Biol. 2024 May;44(5):1065-1085. doi: 10.1161/ATVBAHA.123.318239. Epub 2024 Apr 4.
8
Tissue engineering: Relevance to neonatal congenital heart disease.组织工程:与新生儿先天性心脏病的相关性。
Semin Fetal Neonatal Med. 2022 Feb;27(1):101225. doi: 10.1016/j.siny.2021.101225. Epub 2021 Feb 27.
10
Cell signaling model for arterial mechanobiology.动脉力学生物学的细胞信号模型。
PLoS Comput Biol. 2020 Aug 24;16(8):e1008161. doi: 10.1371/journal.pcbi.1008161. eCollection 2020 Aug.

本文引用的文献

3
Bioactive Materials Facilitating Targeted Local Modulation of Inflammation.促进炎症靶向局部调节的生物活性材料。
JACC Basic Transl Sci. 2019 Feb 25;4(1):56-71. doi: 10.1016/j.jacbts.2018.10.004. eCollection 2019 Feb.
4
Data-Augmented Modeling of Intracranial Pressure.颅内压的数据增强建模。
Ann Biomed Eng. 2019 Mar;47(3):714-730. doi: 10.1007/s10439-018-02191-z. Epub 2019 Jan 3.
7
Mechanobiological model of arterial growth and remodeling.动脉生长和重塑的生物力学模型。
Biomech Model Mechanobiol. 2018 Feb;17(1):87-101. doi: 10.1007/s10237-017-0946-y. Epub 2017 Aug 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验