Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX 75275-0314, USA.
Grimwade Centre for Cultural Materials Conservation, School of Historical and Philosophical Studies, Faculty of Arts, University of Melbourne, Parkville, VIC 3052, Australia.
Molecules. 2020 Mar 30;25(7):1589. doi: 10.3390/molecules25071589.
Periodic local vibrational modes were calculated with the rev-vdW-DF2 density functional to quantify the intrinsic strength of the X-I⋯OA-type halogen bonding (X = I or Cl; OA: carbonyl, ether and -oxide groups) in 32 model systems originating from 20 molecular crystals. We found that the halogen bonding between the donor dihalogen X-I and the wide collection of acceptor molecules OA features considerable variations of the local stretching force constants (0.1-0.8 mdyn/Å) for I⋯O halogen bonds, demonstrating its powerful tunability in bond strength. Strong correlations between bond length and local stretching force constant were observed in crystals for both the donor X-I bonds and I⋯O halogen bonds, extending for the first time the generalized Badger's rule to crystals. It is demonstrated that the halogen atom X controlling the electrostatic attraction between the σ -hole on atom I and the acceptor atom O dominates the intrinsic strength of I⋯O halogen bonds. Different oxygen-containing acceptor molecules OA and even subtle changes induced by substituents can tweak the n → σ ∗ (X-I) charge transfer character, which is the second important factor determining the I⋯O bond strength. In addition, the presence of the second halogen bond with atom X of the donor X-I bond in crystals can substantially weaken the target I⋯O halogen bond. In summary, this study performing the in situ measurement of halogen bonding strength in crystalline structures demonstrates the vast potential of the periodic local vibrational mode theory for characterizing and understanding non-covalent interactions in materials.
采用 rev-vdW-DF2 密度泛函计算了周期性局域振动模式,以量化 32 个模型体系中 X-I⋯OA 型卤键(X = I 或 Cl;OA:羰基、醚和 -氧化物基团)的固有强度,这些模型体系来源于 20 个分子晶体。我们发现,供体二卤 X-I 与受体 OA 分子之间的卤键具有相当大的局部拉伸力常数(0.1-0.8 mdyn/Å)变化,这表明其键强度具有很强的可调性。在晶体中,无论是供体 X-I 键还是 I⋯O 卤键,都观察到键长与局部拉伸力常数之间存在强烈的相关性,这首次将广义 Badger 规则扩展到晶体。证明了控制原子 I 上 σ-空穴与受体原子 O 之间静电吸引力的卤原子 X 支配着 I⋯O 卤键的固有强度。不同的含氧受体分子 OA 甚至取代基引起的微小变化都可以调整 n → σ*(X-I)电荷转移特性,这是决定 I⋯O 键强度的第二个重要因素。此外,晶体中供体 X-I 键的原子 X 存在第二个卤键,会显著削弱目标 I⋯O 卤键。总之,这项在晶体结构中进行卤键强度原位测量的研究表明,周期性局域振动模式理论在表征和理解材料中的非共价相互作用方面具有巨大的潜力。