Suppr超能文献

基于多模态结构神经影像学的多核学习预测双相和单相抑郁的鉴别诊断。

Predicting differential diagnosis between bipolar and unipolar depression with multiple kernel learning on multimodal structural neuroimaging.

机构信息

Division of Neuroscience, Psychiatry and Clinical Psychobiology Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy; University Vita-Salute San Raffaele, Milano, Italy; Fondazione Centro San Raffaele, Milano, Italy.

Division of Neuroscience, Psychiatry and Clinical Psychobiology Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy.

出版信息

Eur Neuropsychopharmacol. 2020 May;34:28-38. doi: 10.1016/j.euroneuro.2020.03.008. Epub 2020 Mar 29.

Abstract

One of the greatest challenges in providing early effective treatment in mood disorders is the early differential diagnosis between major depression (MDD) and bipolar disorder (BD). A remarkable need exists to identify reliable biomarkers for these disorders. We integrate structural neuroimaging techniques (i.e. Tract-based Spatial Statistics, TBSS, and Voxel-based morphometry) in a multiple kernel learning procedure in order to define a predictive function of BD against MDD diagnosis in a sample of 148 patients. We achieved a balanced accuracy of 73.65% with a sensitivity for BD of 74.32% and specificity for MDD of 72.97%. Mass-univariates analyses showed reduced grey matter volume in right hippocampus, amygdala, parahippocampal, fusiform gyrus, insula, rolandic and frontal operculum and cerebellum, in BD compared to MDD. Volumes in these regions and in anterior cingulate cortex were also reduced in BD compared to healthy controls (n = 74). TBSS analyses revealed widespread significant effects of diagnosis on fractional anisotropy, axial, radial, and mean diffusivity in several white matter tracts, suggesting disruption of white matter microstructure in depressed patients compared to healthy controls, with worse pattern for MDD. To best of our knowledge, this is the first study combining grey matter and diffusion tensor imaging in predicting BD and MDD diagnosis. Our results prompt brain quantitative biomarkers and multiple kernel learning as promising tool for personalized treatment in mood disorders.

摘要

在心境障碍中提供早期有效治疗的最大挑战之一是在重度抑郁症 (MDD) 和双相情感障碍 (BD) 之间进行早期鉴别诊断。目前迫切需要确定这些疾病的可靠生物标志物。我们将结构神经影像学技术(即基于束的空间统计学、TBSS 和基于体素的形态测量学)整合到一个多核学习程序中,以便在 148 名患者样本中定义 BD 对 MDD 诊断的预测函数。我们实现了 73.65%的平衡准确性,BD 的敏感性为 74.32%,MDD 的特异性为 72.97%。多元分析显示,与 MDD 相比,BD 患者右侧海马体、杏仁核、海马旁回、梭状回、岛叶、 Rolandic 和额侧盖以及小脑的灰质体积减少。与健康对照组(n=74)相比,BD 患者的这些区域以及前扣带皮层的体积也减少了。TBSS 分析显示,在几个白质束中,诊断对各向异性、轴向、径向和平均扩散率有广泛的显著影响,这表明与健康对照组相比,抑郁患者的白质微观结构受到干扰,MDD 的模式更差。据我们所知,这是首次将灰质和弥散张量成像结合起来预测 BD 和 MDD 诊断的研究。我们的结果提示,脑定量生物标志物和多核学习是心境障碍个性化治疗的有前途的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验