Suppr超能文献

非对比冠状动脉磁共振血管成像:当前的前沿和未来的前景。

Non-contrast coronary magnetic resonance angiography: current frontiers and future horizons.

机构信息

Division of Cardiology, Johns Hopkins University School of Medicine, 600 N Wolfe St, Blalock 524, Baltimore, MD, 21287-0409, USA.

Division of Radiology, Johns Hopkins University, Baltimore, MD, USA.

出版信息

MAGMA. 2020 Oct;33(5):591-612. doi: 10.1007/s10334-020-00834-8. Epub 2020 Apr 2.

Abstract

Coronary magnetic resonance angiography (coronary MRA) is advantageous in its ability to assess coronary artery morphology and function without ionizing radiation or contrast media. However, technical limitations including reduced spatial resolution, long acquisition times, and low signal-to-noise ratios prevent it from clinical routine utilization. Nonetheless, each of these limitations can be specifically addressed by a combination of novel technologies including super-resolution imaging, compressed sensing, and deep-learning reconstruction. In this paper, we first review the current clinical use and motivations for non-contrast coronary MRA, discuss currently available coronary MRA techniques, and highlight current technical developments that hold unique potential to optimize coronary MRA image acquisition and post-processing. In the final section, we examine the various research-based coronary MRA methods and metrics that can be leveraged to assess coronary stenosis severity, physiological function, and atherosclerotic plaque characterization. We specifically discuss how such technologies may contribute to the clinical translation of coronary MRA into a robust modality for routine clinical use.

摘要

冠状动脉磁共振血管造影(coronary MRA)具有无需电离辐射或造影剂即可评估冠状动脉形态和功能的优势。然而,包括空间分辨率降低、采集时间长和信噪比低在内的技术限制使其无法在临床常规应用。尽管如此,这些限制中的每一个都可以通过包括超分辨率成像、压缩感知和深度学习重建在内的新技术的组合来专门解决。在本文中,我们首先回顾非对比冠状动脉 MRA 的当前临床应用和动机,讨论当前可用的冠状动脉 MRA 技术,并强调具有优化冠状动脉 MRA 图像采集和后处理独特潜力的当前技术发展。在最后一节中,我们研究了可以用于评估冠状动脉狭窄严重程度、生理功能和动脉粥样硬化斑块特征的各种基于研究的冠状动脉 MRA 方法和指标。我们特别讨论了这些技术如何有助于将冠状动脉 MRA 转化为一种强大的常规临床应用模式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验