Chen Yuhua, Shaw Jaime L, Xie Yibin, Li Debiao, Christodoulou Anthony G
Department of Bioengineering, University of California, Los Angeles, CA 90095, USA.
Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, CA 90048, USA.
Med Image Comput Comput Assist Interv. 2019 Oct;11765:495-504. doi: 10.1007/978-3-030-32245-8_55. Epub 2019 Oct 10.
High spatiotemporal resolution dynamic magnetic resonance imaging (MRI) is a powerful clinical tool for imaging moving structures as well as to reveal and quantify other physical and physiological dynamics. The low speed of MRI necessitates acceleration methods such as deep learning reconstruction from under-sampled data. However, the massive size of many dynamic MRI problems prevents deep learning networks from directly exploiting global temporal relationships. In this work, we show that by applying deep neural networks inside calculated temporal feature spaces, we enable deep learning reconstruction with global temporal modeling even for image sequences with >40,000 frames. One proposed variation of our approach using dilated multi-level Densely Connected Network (mDCN) speeds up feature space coordinate calculation by 3000x compared to conventional iterative methods, from 20 minutes to 0.39 seconds. Thus, the combination of low-rank tensor and deep learning models not only makes large-scale dynamic MRI feasible but also practical for routine clinical application.
高时空分辨率动态磁共振成像(MRI)是一种强大的临床工具,可用于对移动结构进行成像,以及揭示和量化其他物理和生理动态。MRI的低速度需要加速方法,例如从欠采样数据进行深度学习重建。然而,许多动态MRI问题的规模巨大,阻碍了深度学习网络直接利用全局时间关系。在这项工作中,我们表明,通过在计算出的时间特征空间内应用深度神经网络,即使对于超过40000帧的图像序列,我们也能够通过全局时间建模进行深度学习重建。与传统迭代方法相比,我们提出的一种使用扩张多级密集连接网络(mDCN)的方法变体将特征空间坐标计算速度提高了3000倍,从20分钟缩短到0.39秒。因此,低秩张量和深度学习模型的结合不仅使大规模动态MRI可行,而且对于常规临床应用也切实可行。