文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于改善微流控平台中干细胞增殖和分化的聚二甲基硅氧烷纳米改性支架

PDMS Nano-Modified Scaffolds for Improvement of Stem Cells Proliferation and Differentiation in Microfluidic Platform.

作者信息

Hashemzadeh Hadi, Allahverdi Abdollah, Sedghi Mosslim, Vaezi Zahra, Tohidi Moghadam Tahereh, Rothbauer Mario, Fischer Michael Bernhard, Ertl Peter, Naderi-Manesh Hossein

机构信息

Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, Tehran 14115-154, Iran.

Department of Biophysics, Faculty of Biological Science, Tarbiat Modares University, Tehran 14115-154, Iran.

出版信息

Nanomaterials (Basel). 2020 Apr 2;10(4):668. doi: 10.3390/nano10040668.


DOI:10.3390/nano10040668
PMID:32252384
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7221996/
Abstract

Microfluidics cell-based assays require strong cell-substrate adhesion for cell viability, proliferation, and differentiation. The intrinsic properties of PDMS, a commonly used polymer in microfluidics systems, regarding cell-substrate interactions have limited its application for microfluidics cell-based assays. Various attempts by previous researchers, such as chemical modification, plasma-treatment, and protein-coating of PDMS revealed some improvements. These strategies are often reversible, time-consuming, short-lived with either cell aggregates formation, not cost-effective as well as not user- and eco-friendly too. To address these challenges, cell-surface interaction has been tuned by the modification of PDMS doped with different biocompatible nanomaterials. Gold nanowires (AuNWs), superparamagnetic iron oxide nanoparticles (SPIONs), graphene oxide sheets (GO), and graphene quantum dot (GQD) have already been coupled to PDMS as an alternative biomaterial enabling easy and straightforward integration during microfluidic fabrication. The synthesized nanoparticles were characterized by corresponding methods. Physical cues of the nanostructured substrates such as Young's modulus, surface roughness, and nanotopology have been carried out using atomic force microscopy (AFM). Initial biocompatibility assessment of the nanocomposites using human amniotic mesenchymal stem cells (hAMSCs) showed comparable cell viabilities among all nanostructured PDMS composites. Finally, osteogenic stem cell differentiation demonstrated an improved differentiation rate inside microfluidic devices. The results revealed that the presence of nanomaterials affected a 5- to 10-fold increase in surface roughness. In addition, the results showed enhancement of cell proliferation from 30% (pristine PDMS) to 85% (nano-modified scaffolds containing AuNWs and SPIONs), calcification from 60% (pristine PDMS) to 95% (PDMS/AuNWs), and cell surface marker expression from 40% in PDMS to 77% in SPION- and AuNWs-PDMS scaffolds at 14 day. Our results suggest that nanostructured composites have a very high potential for stem cell studies and future therapies.

摘要

基于微流控芯片的细胞分析需要强大的细胞与基质粘附力以维持细胞活力、增殖和分化。聚二甲基硅氧烷(PDMS)是微流控系统中常用的聚合物,其在细胞与基质相互作用方面的固有特性限制了它在基于微流控芯片的细胞分析中的应用。先前研究人员进行了各种尝试,如对PDMS进行化学修饰、等离子体处理和蛋白质包被,取得了一些改进。但这些策略往往具有可逆性、耗时、寿命短,还会形成细胞聚集体,既不具有成本效益,也不便于用户操作且不环保。为应对这些挑战,通过掺杂不同生物相容性纳米材料对PDMS进行改性来调节细胞表面相互作用。金纳米线(AuNWs)、超顺磁性氧化铁纳米颗粒(SPIONs)、氧化石墨烯片(GO)和石墨烯量子点(GQD)已被与PDMS偶联,作为一种替代生物材料,便于在微流控制造过程中轻松直接地集成。通过相应方法对合成的纳米颗粒进行了表征。使用原子力显微镜(AFM)对纳米结构基质的物理线索,如杨氏模量、表面粗糙度和纳米拓扑结构进行了研究。使用人羊膜间充质干细胞(hAMSCs)对纳米复合材料进行的初步生物相容性评估表明,所有纳米结构的PDMS复合材料的细胞活力相当。最后,成骨干细胞分化显示微流控装置内的分化率有所提高。结果表明,纳米材料的存在使表面粗糙度增加了5到10倍。此外,结果显示细胞增殖从30%(原始PDMS)提高到85%(含有AuNWs和SPIONs的纳米改性支架),钙化从60%(原始PDMS)提高到95%(PDMS/AuNWs),细胞表面标志物表达在第14天从PDMS中的40%提高到SPIONs和AuNWs - PDMS支架中的77%。我们的结果表明,纳米结构复合材料在干细胞研究和未来治疗方面具有很高的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52fd/7221996/4d1f7d657473/nanomaterials-10-00668-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52fd/7221996/f3df1cd18d4a/nanomaterials-10-00668-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52fd/7221996/a9b82d3a68fa/nanomaterials-10-00668-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52fd/7221996/d34e33228fdf/nanomaterials-10-00668-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52fd/7221996/504e58e50963/nanomaterials-10-00668-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52fd/7221996/4d1f7d657473/nanomaterials-10-00668-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52fd/7221996/f3df1cd18d4a/nanomaterials-10-00668-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52fd/7221996/a9b82d3a68fa/nanomaterials-10-00668-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52fd/7221996/d34e33228fdf/nanomaterials-10-00668-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52fd/7221996/504e58e50963/nanomaterials-10-00668-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52fd/7221996/4d1f7d657473/nanomaterials-10-00668-g005.jpg

相似文献

[1]
PDMS Nano-Modified Scaffolds for Improvement of Stem Cells Proliferation and Differentiation in Microfluidic Platform.

Nanomaterials (Basel). 2020-4-2

[2]
Gold Nanowires/Fibrin Nanostructure as Microfluidics Platforms for Enhancing Stem Cell Differentiation: Bio-AFM Study.

Micromachines (Basel). 2019-12-30

[3]
Simple surface engineering of polydimethylsiloxane with polydopamine for stabilized mesenchymal stem cell adhesion and multipotency.

Sci Rep. 2015-12-9

[4]
Optimization of a polydopamine (PD)-based coating method and polydimethylsiloxane (PDMS) substrates for improved mouse embryonic stem cell (ESC) pluripotency maintenance and cardiac differentiation.

Biomater Sci. 2017-5-30

[5]
The effects of poly(dimethylsiloxane) surface silanization on the mesenchymal stem cell fate.

Biomater Sci. 2014-10-15

[6]
Mitigated reactive oxygen species generation leads to an improvement of cell proliferation on poly[glycidyl methacrylate-co-poly(ethylene glycol) methacrylate] functionalized polydimethylsiloxane surfaces.

J Biomed Mater Res A. 2015-9

[7]
Surface modification of polydimethylsiloxane by the cataractous eye protein isolate.

Int J Biol Macromol. 2024-3

[8]
Bioactivation of 3D Cell-Imprinted Polydimethylsiloxane Surfaces by Bone Protein Nanocoating for Bone Tissue Engineering.

ACS Omega. 2022-7-21

[9]
Atmospheric Pressure Plasma Functionalization of Sealed PDMS Microfluidics: Application to Capillary Pumping and Enhanced Cell Growth.

Chempluschem. 2024-12

[10]
The effects of gelatin-dopamine coating on polydimethylsiloxane substrates on pluripotency maintenance and myocardial differentiation of cultured mouse embryonic stem cells.

J Mater Chem B. 2016-12-28

引用本文的文献

[1]
Surface Deformation of Biocompatible Materials: Recent Advances in Biological Applications.

Biomimetics (Basel). 2024-6-28

[2]
Graphene: A Multifaceted Carbon-Based Material for Bone Tissue Engineering Applications.

ACS Omega. 2023-12-21

[3]
Lung Cancer Cell-Derived Exosome Detection Using Electrochemical Approach towards Early Cancer Screening.

Int J Mol Sci. 2023-12-7

[4]
Fabrication of Nanogroove Arrays on Acrylic Film Using Micro-Embossing Technique.

Polymers (Basel). 2023-9-18

[5]
An Overview of Nanomaterial Applications in Pharmacology.

Biomed Res Int. 2023

[6]
Aligned TiO Scaffolds in the Presence of a Galactopyranose Matrix by Sol-Gel Process.

Polymers (Basel). 2023-1-17

[7]
Biodegradable Carbonate Apatite Nanoparticle as a Delivery System to Promote Afatinib Delivery for Non-Small Cell Lung Cancer Treatment.

Pharmaceutics. 2022-6-10

[8]
Fingerprinting Metabolic Activity and Tissue Integrity of 3D Lung Cancer Spheroids under Gold Nanowire Treatment.

Cells. 2022-1-29

[9]
Incorporation of Superparamagnetic Iron Oxide Nanoparticles into Collagen Formulation for 3D Electrospun Scaffolds.

Nanomaterials (Basel). 2022-1-6

[10]
DNA/Magnetic Nanoparticles Composite to Attenuate Glass Surface Nanotopography for Enhanced Mesenchymal Stem Cell Differentiation.

Polymers (Basel). 2022-1-17

本文引用的文献

[1]
Capture and detection of rare cancer cells in blood by intrinsic fluorescence of a novel functionalized diatom.

Photodiagnosis Photodyn Ther. 2020-6

[2]
Study of Structural stability and formation mechanisms in DSPC and DPSM liposomes: A coarse-grained molecular dynamics simulation.

Sci Rep. 2020-2-4

[3]
Vascular Wall-Mesenchymal Stem Cells Differentiation on 3D Biodegradable Highly Porous CaSi-DCPD Doped Poly (α-hydroxy) Acids Scaffolds for Bone Regeneration.

Nanomaterials (Basel). 2020-1-29

[4]
Gold Nanowires/Fibrin Nanostructure as Microfluidics Platforms for Enhancing Stem Cell Differentiation: Bio-AFM Study.

Micromachines (Basel). 2019-12-30

[5]
Mixing Performance of a Cost-effective Split-and-Recombine 3D Micromixer Fabricated by Xurographic Method.

Micromachines (Basel). 2019-11-16

[6]
A novel aspect of functionalized graphene quantum dots in cytotoxicity studies.

Toxicol In Vitro. 2019-9-10

[7]
Electrospun Polyvinylidene Fluoride-Based Fibrous Scaffolds with Piezoelectric Characteristics for Bone and Neural Tissue Engineering.

Nanomaterials (Basel). 2019-6-30

[8]
Scaffold Structural Microenvironmental Cues to Guide Tissue Regeneration in Bone Tissue Applications.

Nanomaterials (Basel). 2018-11-21

[9]
Hemoglobin-incorporated iron quantum clusters as a novel fluorometric and colorimetric probe for sensing and cellular imaging of Zn(II) and cysteine.

Mikrochim Acta. 2017-12-18

[10]
Small molecule absorption by PDMS in the context of drug response bioassays.

Biochem Biophys Res Commun. 2017-1-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索