Sandell Susanne, Maire Jeremie, Chávez-Ángel Emigdio, Torres Clivia M Sotomayor, Kristiansen Helge, Zhang Zhiliang, He Jianying
NTNU Nanomechanical Lab, Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway.
Catalan Institute of Nanoscience and Nanotechnology (ICN2), (ICN-CSIC) Barcelona, Campus UAB, E08193 Bellaterra, Spain.
Nanomaterials (Basel). 2020 Apr 2;10(4):670. doi: 10.3390/nano10040670.
In organic electronics, thermal management is a challenge, as most organic materials conduct heat poorly. As these devices become smaller, thermal transport is increasingly limited by organic-inorganic interfaces, for example that between a metal and a polymer. However, the mechanisms of heat transport at these interfaces are not well understood. In this work, we compare three types of metal-polymer interfaces. Polymethyl methacrylate (PMMA) films of different thicknesses (1-15 nm) were spin-coated on silicon substrates and covered with an 80 nm gold film either directly, or over an interface layer of 2 nm of an adhesion promoting metal-either titanium or nickel. We use the frequency-domain thermoreflectance (FDTR) technique to measure the effective thermal conductivity of the polymer film and then extract the metal-polymer thermal boundary conductance (TBC) with a thermal resistance circuit model. We found that the titanium layer increased the TBC by a factor of 2, from 59 × 10 W·m·K to 115 × 10 W·m·K, while the nickel layer increased TBC to 139 × 10 W·m·K. These results shed light on possible strategies to improve heat transport in organic electronic systems.
在有机电子学中,热管理是一项挑战,因为大多数有机材料的导热性能较差。随着这些器件变得越来越小,热传输越来越受到有机-无机界面的限制,例如金属与聚合物之间的界面。然而,这些界面处的热传输机制尚未得到很好的理解。在这项工作中,我们比较了三种类型的金属-聚合物界面。将不同厚度(1-15纳米)的聚甲基丙烯酸甲酯(PMMA)薄膜旋涂在硅基板上,并直接或在2纳米促进粘附的金属(钛或镍)界面层上覆盖一层80纳米的金膜。我们使用频域热反射(FDTR)技术测量聚合物薄膜的有效热导率,然后用热阻电路模型提取金属-聚合物热边界电导(TBC)。我们发现,钛层使TBC增加了2倍,从59×10 W·m·K增加到115×10 W·m·K,而镍层使TBC增加到139×10 W·m·K。这些结果为改善有机电子系统中的热传输提供了可能的策略。