Suppr超能文献

具有原位形成硫空位的ReS纳米片用于高效高选择性光催化CO还原

ReS Nanosheets with In Situ Formed Sulfur Vacancies for Efficient and Highly Selective Photocatalytic CO Reduction.

作者信息

Zhang Yanzhao, Yao Dazhi, Xia Bingquan, Xu Haolan, Tang Youhong, Davey Kenneth, Ran Jingrun, Qiao Shi-Zhang

机构信息

School of Chemical Engineering and Advanced Materials The University of Adelaide Adelaide SA 5005 Australia.

Future Industries Institute University of South Australia Adelaide SA 5095 Australia.

出版信息

Small Sci. 2021 Jan 15;1(2):2000052. doi: 10.1002/smsc.202000052. eCollection 2021 Feb.

Abstract

Artificial photosynthesis can provide valuable fuels and positively impact greenhouse effects, via transforming carbon dioxide (CO) and water (HO) into hydrocarbons using semiconductor-based photocatalysts. However, the inefficient charge-carrier dissociation and transportation as well as the lack of surface active sites are two major drawbacks to boosting their activity and selectivity in photocatalytic CO reduction. Recently, ReS has received tremendous attention in the photocatalysis area due to its intriguing physicochemical properties. Nevertheless, the application of ReS in photocatalytic CO reduction is scarcely covered. Herein, a heterojunction formed between ReS nanosheets and CdS nanoparticles is reported, achieving an apparently raised CO production of 7.1 μmol g and high selectivity of 93.4%. The as-prepared ReS/CdS heterojunction exhibits strengthened visible-light absorption, high-efficiency electron-hole pair separation/transfer, and increased adsorption/activation/reduction of CO on in situ created sulfur vacancies of ReS, thus all favoring CO photoreduction. These are corroborated by advanced characterization techniques, e.g., synchrotron-based X-ray absorption near-edge structure, and density functional theory-based computations. The findings will be of broad interest in practical design and fabrication of surface active sites and semiconductor heterojunctions for applications in catalysis, electronics, and optoelectronics.

摘要

人工光合作用可以通过使用基于半导体的光催化剂将二氧化碳(CO₂)和水(H₂O)转化为碳氢化合物,从而提供有价值的燃料并对温室效应产生积极影响。然而,电荷载流子的低效解离和传输以及缺乏表面活性位点是提高其光催化CO₂还原活性和选择性的两个主要缺点。最近,二硫化铼(ReS₂)因其引人入胜的物理化学性质而在光催化领域受到了极大关注。然而,二硫化铼在光催化CO₂还原中的应用却鲜有报道。在此,我们报道了在二硫化铼纳米片和硫化镉(CdS)纳米颗粒之间形成的异质结,实现了7.1 μmol g⁻¹的明显提高的CO产量和93.4%的高选择性。所制备的二硫化铼/硫化镉异质结表现出增强的可见光吸收、高效的电子-空穴对分离/转移,以及在原位生成的二硫化铼硫空位上对CO₂的吸附/活化/还原增加,因此所有这些都有利于CO₂光还原。先进的表征技术,如基于同步加速器的X射线吸收近边结构和基于密度泛函理论的计算,证实了这些结果。这些发现将在用于催化、电子和光电子学的表面活性位点和半导体异质结的实际设计和制造中引起广泛关注。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ed7/11935916/e369467f0ff8/SMSC-1-2000052-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验