Suppr超能文献

用于下一代计算的手性富集碳纳米管。

Chirality-Enriched Carbon Nanotubes for Next-Generation Computing.

作者信息

Gaviria Rojas William A, Hersam Mark C

机构信息

Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA.

Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA.

出版信息

Adv Mater. 2020 Oct;32(41):e1905654. doi: 10.1002/adma.201905654. Epub 2020 Apr 7.

Abstract

For the past half century, silicon has served as the primary material platform for integrated circuit technology. However, the recent proliferation of nontraditional electronics, such as wearables, embedded systems, and low-power portable devices, has led to increasingly complex mechanical and electrical performance requirements. Among emerging electronic materials, single-walled carbon nanotubes (SWCNTs) are promising candidates for next-generation computing as a result of their superlative electrical, optical, and mechanical properties. Moreover, their chirality-dependent properties enable a wide range of emerging electronic applications including sub-10 nm complementary field-effect transistors, optoelectronic integrated circuits, and enantiomer-recognition sensors. Here, recent progress in SWCNT-based computing devices is reviewed, with an emphasis on the relationship between chirality enrichment and electronic functionality. In particular, after highlighting chirality-dependent SWCNT properties and chirality enrichment methods, the range of computing applications that have been demonstrated using chirality-enriched SWCNTs are summarized. By identifying remaining challenges and opportunities, this work provides a roadmap for next-generation SWCNT-based computing.

摘要

在过去的半个世纪里,硅一直是集成电路技术的主要材料平台。然而,最近可穿戴设备、嵌入式系统和低功耗便携式设备等非传统电子产品的激增,导致了对机械和电气性能要求越来越复杂。在新兴电子材料中,单壁碳纳米管(SWCNT)因其卓越的电学、光学和机械性能,成为下一代计算的有前途的候选材料。此外,它们的手性依赖特性使得包括亚10纳米互补场效应晶体管、光电集成电路和对映体识别传感器在内的广泛新兴电子应用成为可能。在此,综述了基于单壁碳纳米管的计算设备的最新进展,重点是手性富集与电子功能之间的关系。特别是,在强调了手性依赖的单壁碳纳米管特性和手性富集方法之后,总结了使用手性富集单壁碳纳米管已证明的计算应用范围。通过识别剩余的挑战和机遇,这项工作为下一代基于单壁碳纳米管的计算提供了路线图。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验