Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232.
Mol Biol Cell. 2020 Jun 1;31(12):1273-1288. doi: 10.1091/mbc.E19-11-0652. Epub 2020 Apr 8.
Forces generated by heart muscle contraction must be balanced by adhesion to the extracellular matrix (ECM) and to other cells for proper heart function. Decades of data have suggested that cell-ECM adhesions are important for sarcomere assembly. However, the relationship between cell-ECM adhesions and sarcomeres assembling de novo remains untested. Sarcomeres arise from muscle stress fibers (MSFs) that are translocating on the top (dorsal) surface of cultured cardiomyocytes. Using an array of tools to modulate cell-ECM adhesion, we established a strong positive correlation between the extent of cell-ECM adhesion and sarcomere assembly. On the other hand, we found a strong negative correlation between the extent of cell-ECM adhesion and the rate of MSF translocation, a phenomenon also observed in nonmuscle cells. We further find a conserved network architecture that also exists in nonmuscle cells. Taken together, our results show that cell-ECM adhesions mediate coupling between the substrate and MSFs, allowing their maturation into sarcomere-containing myofibrils.
心肌收缩产生的力必须与细胞外基质 (ECM) 和其他细胞的黏附相平衡,以保证心脏的正常功能。几十年来的数据表明,细胞-ECM 黏附对于肌节的组装很重要。然而,细胞-ECM 黏附与从头开始组装肌节之间的关系尚未得到验证。肌节来源于在培养的心肌细胞的顶面(背侧)表面上迁移的肌原纤维应力纤维 (MSFs)。我们使用一系列工具来调节细胞-ECM 黏附,发现细胞-ECM 黏附的程度与肌节的组装之间呈正相关。另一方面,我们发现细胞-ECM 黏附的程度与 MSF 迁移的速度呈负相关,这一现象在非肌肉细胞中也有观察到。我们进一步发现了一个存在于非肌肉细胞中的保守网络架构。总之,我们的研究结果表明,细胞-ECM 黏附介导了基质与 MSF 之间的偶联,从而使它们成熟为含有肌节的肌原纤维。