Suppr超能文献

横纹肌蛋白质受机械变形和化学翻译后修饰的双重调控。

Striated muscle proteins are regulated both by mechanical deformation and by chemical post-translational modification.

作者信息

Solís Christopher, Russell Brenda

机构信息

Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612 USA.

出版信息

Biophys Rev. 2021 Sep 4;13(5):679-695. doi: 10.1007/s12551-021-00835-4. eCollection 2021 Oct.

Abstract

All cells sense force and build their cytoskeleton to optimize function. How is this achieved? Two major systems are involved. The first is that load deforms specific protein structures in a proportional and orientation-dependent manner. The second is post-translational modification of proteins as a consequence of signaling pathway activation. These two processes work together in a complex way so that local subcellular assembly as well as overall cell function are controlled. This review discusses many cell types but focuses on striated muscle. Detailed information is provided on how load deforms the structure of proteins in the focal adhesions and filaments, using α-actinin, vinculin, talin, focal adhesion kinase, LIM domain-containing proteins, filamin, myosin, titin, and telethonin as examples. Second messenger signals arising from external triggers are distributed throughout the cell causing post-translational or chemical modifications of protein structures, with the actin capping protein CapZ and troponin as examples. There are numerous unanswered questions of how mechanical and chemical signals are integrated by muscle proteins to regulate sarcomere structure and function yet to be studied. Therefore, more research is needed to see how external triggers are integrated with local tension generated within the cell. Nonetheless, maintenance of tension in the sarcomere is the essential and dominant mechanism, leading to the well-known phrase in exercise physiology: "use it or lose it."

摘要

所有细胞都能感知力并构建其细胞骨架以优化功能。这是如何实现的呢?涉及两个主要系统。第一个是负载以比例和方向依赖的方式使特定蛋白质结构发生变形。第二个是信号通路激活导致蛋白质的翻译后修饰。这两个过程以复杂的方式协同工作,从而控制局部亚细胞组装以及整体细胞功能。本综述讨论了多种细胞类型,但重点是横纹肌。以α-辅肌动蛋白、纽蛋白、踝蛋白、粘着斑激酶、含LIM结构域的蛋白质、细丝蛋白、肌球蛋白、肌联蛋白和隐钙蛋白为例,详细介绍了负载如何使粘着斑和细丝中的蛋白质结构发生变形。由外部触发因素产生的第二信使信号分布于整个细胞,导致蛋白质结构的翻译后修饰或化学修饰,以肌动蛋白封端蛋白CapZ和肌钙蛋白为例。关于肌肉蛋白如何整合机械和化学信号以调节肌节结构和功能,仍有许多未解决的问题有待研究。因此,需要更多研究来了解外部触发因素如何与细胞内产生的局部张力整合。尽管如此,肌节中张力的维持是基本且主导的机制,这导致了运动生理学中那句著名的话:“用进废退”。

相似文献

4
Mechanobiology in cardiac mechanics.心脏力学中的力学生物学
Biophys Rev. 2021 Aug 27;13(5):583-585. doi: 10.1007/s12551-021-00827-4. eCollection 2021 Oct.

引用本文的文献

2
The role of mechanosignaling in the control of myocardial mass.机械信号传导在心肌质量控制中的作用。
Am J Physiol Heart Circ Physiol. 2025 Mar 1;328(3):H622-H638. doi: 10.1152/ajpheart.00277.2024. Epub 2024 Dec 31.

本文引用的文献

1
The molecular basis for sarcomere organization in vertebrate skeletal muscle.脊椎动物骨骼肌肌节组织的分子基础。
Cell. 2021 Apr 15;184(8):2135-2150.e13. doi: 10.1016/j.cell.2021.02.047. Epub 2021 Mar 24.
9
Myofibril assembly and the roles of the ubiquitin proteasome system.肌原纤维组装和泛素蛋白酶体系统的作用。
Cytoskeleton (Hoboken). 2020 Oct;77(10):456-479. doi: 10.1002/cm.21641. Epub 2020 Nov 7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验