Suppr超能文献

COVID-19、SARS 和 MERS 的感染动力学数学模型及其分析。

Mathematical model of infection kinetics and its analysis for COVID-19, SARS and MERS.

机构信息

College of Computational Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.

出版信息

Infect Genet Evol. 2020 Aug;82:104306. doi: 10.1016/j.meegid.2020.104306. Epub 2020 Apr 8.

Abstract

The purpose of this paper is to reveal the spread rules of the three pneumonia: COVID-19, SARS and MERS. We compare the new spread characteristics of COVID-19 with those of SARS and MERS. By considering the growth rate and inhibition constant of infectious diseases, their propagation growth model is established. The parameters of the three coronavirus transmission growth models are obtained by nonlinear fitting. Parametric analysis shows that the growth rate of COVID-19 is about twice that of the SARS and MERS, and the COVID-19 doubling cycle is two to three days, suggesting that the number of COVID-19 patients would double in two to three days without human intervention. The infection inhibition constant in Hubei is two orders of magnitude lower than in other regions, which reasonably explains the situation of the COVID-19 outbreak in Hubei.

摘要

本文旨在揭示三种肺炎(COVID-19、SARS 和 MERS)的传播规律。我们将 COVID-19 的新传播特征与 SARS 和 MERS 进行了比较。通过考虑传染病的增长率和抑制常数,建立了它们的传播增长模型。通过非线性拟合得到了三种冠状病毒传播增长模型的参数。参数分析表明,COVID-19 的增长率约为 SARS 和 MERS 的两倍,COVID-19 的倍增周期为两到三天,这表明如果没有人为干预,COVID-19 患者的数量将在两到三天内翻一番。湖北地区的感染抑制常数比其他地区低两个数量级,这合理地解释了湖北 COVID-19 疫情的情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a650/7141629/ff5e3f4228b4/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验