Suppr超能文献

采用选择性激光熔化技术原位制备具有定制微观结构、增强机械性能和生物相容性的钛铌合金。

In situ fabrication of a titanium-niobium alloy with tailored microstructures, enhanced mechanical properties and biocompatibility by using selective laser melting.

机构信息

State Key Lab of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798, Singapore.

出版信息

Mater Sci Eng C Mater Biol Appl. 2020 Jun;111:110784. doi: 10.1016/j.msec.2020.110784. Epub 2020 Feb 26.

Abstract

A titanium-niobium (Ti-Nb) alloy with tailored microstructures, enhanced mechanical properties and biocompatibility was in situ fabricated by selective laser melting (SLM) using a blended powder with 25 wt.% Nb content. The effect of laser energy density from 70 J/mm to 110 J/mm on the phase transformation, microstructure, and mechanical properties of the SLM-printed Ti-25Nb alloy was investigated. The results indicate that the energy density of 110 J/mm results in the highest relative density and homogeneous element distributions in the alloy. The α' and β phases with an orientation relationship of [023]β//[-12-16]α' were identified through X-ray diffraction and transmission electron microscopy, and their proportions are crucially determined by the laser energy density. With an increase in the energy density, the microstructure of the Ti-25Nb alloy varies from acicular-shaped grains to coarsened lath-shaped grains and to lath-shaped grain + cellular-shaped subgrains, due to the decrease in cooling rate and the rise in temperature gradient. The yield strength and microhardness of the printed Ti-25Nb alloy decrease with the increase in energy density from 70 J/mm to 100 J/mm, and then increase to the highest values of 645 MPa and 264 HV at 110 J/mm, respectively. This variation of mechanical properties is dependent on both the coarsening of α' phase and the formation of β (Ti, Nb) solid solution. Besides, the SLM-printed Ti-25Nb alloy exhibits both the excellent in vitro apatite-forming capability and better cell spread and proliferation compared to pure Ti.

摘要

采用 25wt.%Nb 含量的混合粉末,通过选择性激光熔化(SLM)原位制备了具有定制微观结构、增强机械性能和生物相容性的钛-铌(Ti-Nb)合金。研究了激光能量密度从 70 J/mm 到 110 J/mm 对 SLM 打印 Ti-25Nb 合金的相变、微观结构和力学性能的影响。结果表明,激光能量密度为 110 J/mm 时,合金的相对密度最高,元素分布最均匀。X 射线衍射和透射电子显微镜表明,存在具有[023]β//[-12-16]α'取向关系的α'和β 相,其比例取决于激光能量密度。随着能量密度的增加,Ti-25Nb 合金的微观结构从针状晶粒变为粗化的板条晶粒和板条晶粒+胞状亚晶粒,这是由于冷却速率降低和温度梯度升高所致。打印 Ti-25Nb 合金的屈服强度和显微硬度随能量密度从 70 J/mm 增加到 100 J/mm 而降低,然后在 110 J/mm 时增加到 645 MPa 和 264 HV 的最高值。力学性能的这种变化取决于α'相的粗化和β(Ti,Nb)固溶体的形成。此外,与纯钛相比,SLM 打印的 Ti-25Nb 合金具有出色的体外磷灰石形成能力和更好的细胞扩散和增殖能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验