Suppr超能文献

硅酸酶在酵母上的基因表面展示赋予了具有活性和可再生性的生物二氧化硅-酵母杂化材料。

Genetical Surface Display of Silicatein on Confers Living and Renewable Biosilica-Yeast Hybrid Materials.

作者信息

Wang Hongying, Wang Zhuangzhuang, Liu Guanglei, Cheng Xiaohong, Chi Zhenming, Madzak Catherine, Liu Chenguang, Chi Zhe

机构信息

College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, 266003 Qingdao, China.

Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, F-78850 Thiverval-Grignon, France.

出版信息

ACS Omega. 2020 Mar 26;5(13):7555-7566. doi: 10.1021/acsomega.0c00393. eCollection 2020 Apr 7.

Abstract

In this work, a biological engineering-based biosilica-yeast hybrid material was developed. It was obtained by the aggregation of through biosilicification catalyzed using genetically displayed silicatein on its cell surface. With orthosilicate or seawater as the substrate, the silicatein-displayed yeast could aggregate into flocs with a flocculation efficiency of nearly 100%. The resulting floc was found to be a sheetlike biosilica-yeast hybrid material formed by the biosilica-mediated immobilization of yeast cells via cross-linking and embedding, turning the original hydrophilicity of yeast cells into hydrophobicity. In addition, this material was characterized to be porous with an average pore diameter of approximately 10 μm and porosity of over 70%. Because of these properties, this hybrid material could achieve enhanced removal efficiencies for chromium ions and -hexadecane, which were both above 99%, as compared to the free cells of in aqueous environments. Importantly, this hybrid material could be recultivated to generate new batches of yeast cells that maintain parallel properties to the first generation so that the same hybrid material could be reproduced with unchanged highly efficient removal of chromium and -hexadecane to those of the first generation, demonstrating that this biosilica-yeast hybrid material was living and renewable. This work presented a novel way of harnessing silicatein and to achieve biological synthesis of a living inorganic-organic hybrid material that has potential to be applied in water treatment.

摘要

在这项工作中,开发了一种基于生物工程的生物二氧化硅 - 酵母杂化材料。它是通过在其细胞表面使用基因展示的硅酸酶催化生物矿化作用使[此处原文缺失部分内容]聚集而获得的。以原硅酸酯或海水为底物,展示硅酸酶的酵母能够聚集成絮凝物,絮凝效率接近100%。结果发现,所得絮凝物是一种片状生物二氧化硅 - 酵母杂化材料,它是由生物二氧化硅通过交联和包埋介导的酵母细胞固定化形成的,将酵母细胞原来的亲水性转变为疏水性。此外,这种材料的特征是具有平均孔径约为10μm且孔隙率超过70%的多孔结构。由于这些特性,与水环境中的游离细胞相比,这种杂化材料对铬离子和十六烷的去除效率得到提高,两者均高于99%。重要的是,这种杂化材料可以再培养以产生新一批酵母细胞,这些细胞保持与第一代平行的特性,从而可以以与第一代相同的高效去除铬和十六烷的方式再现相同的杂化材料,这表明这种生物二氧化硅 - 酵母杂化材料是有生命的且可再生的。这项工作提出了一种利用硅酸酶和[此处原文缺失部分内容]实现具有水处理应用潜力的有生命的无机 - 有机杂化材料生物合成的新方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2184/7144138/5400908ac761/ao0c00393_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验