Suppr超能文献

通过中温转化化学构建空气稳定且锂沉积可调控的石榴石界面

Building an Air Stable and Lithium Deposition Regulable Garnet Interface from Moderate-Temperature Conversion Chemistry.

作者信息

Duan Hui, Chen Wan-Ping, Fan Min, Wang Wen-Peng, Yu Le, Tan Shuang-Jie, Chen Xiang, Zhang Qiang, Xin Sen, Wan Li-Jun, Guo Yu-Guo

机构信息

CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China.

University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.

出版信息

Angew Chem Int Ed Engl. 2020 Jul 13;59(29):12069-12075. doi: 10.1002/anie.202003177. Epub 2020 May 12.

Abstract

Garnet-type electrolytes suffer from unstable chemistry against air exposure, which generates contaminants on electrolyte surface and accounts for poor interfacial contact with the Li metal. Thermal treatment of the garnet at >700 °C could remove the surface contaminants, yet it regenerates the contaminants in the air, and aggravates the Li dendrite issue as more electron-conducting defective sites are exposed. In a departure from the removal approach, here we report a new surface chemistry that converts the contaminants into a fluorinated interface at moderate temperature <180 °C. The modified interface shows a high electron tunneling barrier and a low energy barrier for Li surface diffusion, so that it enables dendrite-proof Li plating/stripping at a high critical current density of 1.4 mA cm . Moreover, the modified interface exhibits high chemical and electrochemical stability against air exposure, which prevents regeneration of contaminants and keeps high critical current density of 1.1 mA cm . The new chemistry presents a practical solution for realization of high-energy solid-state Li metal batteries.

摘要

石榴石型电解质在暴露于空气中时化学性质不稳定,这会在电解质表面产生污染物,并导致与锂金属的界面接触不良。在高于700°C的温度下对石榴石进行热处理可以去除表面污染物,但它会在空气中再次产生污染物,并且随着更多导电缺陷位点的暴露,会加剧锂枝晶问题。与去除污染物的方法不同,我们在此报告一种新的表面化学方法,该方法在低于180°C的适中温度下将污染物转化为氟化界面。改性后的界面显示出高电子隧穿势垒和低锂表面扩散能垒,因此它能够在1.4 mA cm的高临界电流密度下实现无枝晶锂电镀/剥离。此外,改性后的界面在暴露于空气中时表现出高化学和电化学稳定性,可防止污染物再生,并保持1.1 mA cm的高临界电流密度。这种新的化学方法为实现高能固态锂金属电池提供了一种切实可行的解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验