Suppr超能文献

在线自适应磁共振引导放射治疗中体素剂量预测的机器学习模型的开发与评估

Development and evaluation of machine learning models for voxel dose predictions in online adaptive magnetic resonance guided radiation therapy.

作者信息

Thomas M Allan, Fu Yabo, Yang Deshan

机构信息

Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, USA.

出版信息

J Appl Clin Med Phys. 2020 Jul;21(7):60-69. doi: 10.1002/acm2.12884. Epub 2020 Apr 19.

Abstract

PURPOSE

Daily online adaptive plan quality in magnetic resonance imaging guided radiation therapy (MRgRT) is difficult to assess in relation to the fully optimized, high quality plans traditionally established offline. Machine learning prediction models developed in this work are capable of predicting 3D dose distributions, enabling the evaluation of online adaptive plan quality to better inform adaptive decision-making in MRgRT.

METHODS

Artificial neural networks predicted 3D dose distributions from input variables related to patient anatomy, geometry, and target/organ-at-risk relationships in over 300 treatment plans from 53 patients receiving adaptive, linac-based MRgRT for abdominal cancers. The models do not include any beam related variables such as beam angles or fluence and were optimized to balance errors related to raw dose and specific plan quality metrics used to guide daily online adaptive decisions.

RESULTS

Averaged over all plans, the dose prediction error and the absolute error were 0.1 ± 3.4 Gy (0.1 ± 6.2%) and 3.5 ± 2.4 Gy (6.4 ± 4.3%) respectively. Plan metric prediction errors were -0.1 ± 1.5%, -0.5 ± 2.1%, -0.9 ± 2.2 Gy, and 0.1 ± 2.7 Gy for V95, V100, D95, and D respectively. Plan metric prediction absolute errors were 1.1 ± 1.1%, 1.5 ± 1.5%, 1.9 ± 1.4 Gy, and 2.2 ± 1.6 Gy. Approximately 10% (25) of the plans studied were clearly identified by the prediction models as inferior quality plans needing further optimization and refinement.

CONCLUSION

Machine learning prediction models for treatment plan 3D dose distributions in online adaptive MRgRT were developed and tested. Clinical integration of the models requires minimal effort, producing 3D dose predictions for a new patient's plan using only target and OAR structures as inputs. These models can enable improved workflows for MRgRT through more informed plan optimization and plan quality assessment in real time.

摘要

目的

与传统离线建立的完全优化的高质量计划相比,磁共振成像引导放射治疗(MRgRT)中每日在线自适应计划的质量难以评估。本研究开发的机器学习预测模型能够预测三维剂量分布,从而评估在线自适应计划的质量,以便更好地为MRgRT中的自适应决策提供信息。

方法

人工神经网络根据与患者解剖结构、几何形状以及靶区/危及器官关系相关的输入变量,对53例接受基于直线加速器的腹部癌症自适应MRgRT治疗的患者的300多个治疗计划中的三维剂量分布进行预测。这些模型不包括任何与射束相关的变量,如射束角度或注量,并进行了优化,以平衡与原始剂量相关的误差以及用于指导每日在线自适应决策的特定计划质量指标。

结果

在所有计划中,剂量预测误差和绝对误差分别为0.1±3.4 Gy(0.1±6.2%)和3.5±2.4 Gy(6.4±4.3%)。对于V95、V100、D95和D,计划指标预测误差分别为-0.1±1.5%、-0.5±2.1%、-0.9±2.2 Gy和0.1±2.7 Gy。计划指标预测绝对误差分别为1.1±1.1%、1.5±1.5%、1.9±1.4 Gy和2.2±1.6 Gy。预测模型明确识别出约10%(25个)所研究的计划为质量较差的计划,需要进一步优化和完善。

结论

开发并测试了用于在线自适应MRgRT中治疗计划三维剂量分布的机器学习预测模型。这些模型的临床整合所需工作量极小,仅使用靶区和危及器官结构就能为新患者的计划生成三维剂量预测。通过更明智的计划优化和实时计划质量评估,这些模型可以改进MRgRT的工作流程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adba/7386189/b9980678771d/ACM2-21-60-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验