Suppr超能文献

基于单病例学习的自适应放疗剂量预测。

Single patient learning for adaptive radiotherapy dose prediction.

机构信息

Medical Artificial Intelligence and Automation Laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.

出版信息

Med Phys. 2023 Dec;50(12):7324-7337. doi: 10.1002/mp.16799. Epub 2023 Oct 20.

Abstract

BACKGROUND

Throughout a patient's course of radiation therapy, maintaining accuracy of their initial treatment plan over time is challenging due to anatomical changes-for example, stemming from patient weight loss or tumor shrinkage. Online adaptation of their RT plan to these changes is crucial, but hindered by manual and time-consuming processes. While deep learning (DL) based solutions have shown promise in streamlining adaptive radiation therapy (ART) workflows, they often require large and extensive datasets to train population-based models.

PURPOSE

This study extends our prior research by introducing a minimalist approach to patient-specific adaptive dose prediction. In contrast to our prior method, which involved fine-tuning a pre-trained population model, this new method trains a model from scratch using only a patient's initial treatment data. This patient-specific dose predictor aims to enhance clinical accessibility, thereby empowering physicians and treatment planners to make more informed, quantitative decisions in ART. We hypothesize that patient-specific DL models will provide more accurate adaptive dose predictions for their respective patients compared to a population-based DL model.

METHODS

We selected 33 patients to train an adaptive population-based (AP) model. Ten additional patients were selected, and their respective initial RT data served as single samples for training patient-specific (PS) models. These 10 patients contained an additional 26 ART plans that were withheld as the test dataset to evaluate AP versus PS model dose prediction performance. We assessed model performance using Mean Absolute Percent Error (MAPE) by comparing predicted doses to the originally delivered ground truth doses. We used the Wilcoxon signed-rank test to determine statistically significant differences in terms of MAPE between the AP and PS model results across the test dataset. Furthermore, we calculated differences between predicted and ground truth mean doses for segmented structures and determined statistical significance in the differences for each of them.

RESULTS

The average MAPE across AP and PS model dose predictions was 5.759% and 4.069%, respectively. The Wilcoxon signed-rank test yielded two-tailed p-value =  , indicating that the MAPE differences between the AP and PS model dose predictions are statistically significant, and 95% confidence interval = [-2.1610, -1.0130], indicating 95% confidence that the MAPE difference between the AP and PS models for a population lies in this range. Out of 24 total segmented structures, the comparison of mean dose differences for 12 structures indicated statistical significance with two-tailed p-values < 0.05.

CONCLUSION

Our study demonstrates the potential of patient-specific deep learning models in application to ART. Notably, our method streamlines the training process by minimizing the size of the required training dataset, as only a single patient's initial treatment data is required. External institutions considering the implementation of such a technology could package such a model so that it only requires the upload of a reference treatment plan for model training and deployment. Our single patient learning strategy demonstrates promise in ART due to its minimal dataset requirement and its utility in personalization of cancer treatment.

摘要

背景

在患者接受放射治疗的过程中,由于解剖结构的变化(例如,源于患者体重减轻或肿瘤缩小),随着时间的推移,准确维持初始治疗计划极具挑战性。在线适应这些变化对他们的 RT 计划至关重要,但由于手动和耗时的过程而受到阻碍。虽然基于深度学习 (DL) 的解决方案已显示出简化自适应放射治疗 (ART) 工作流程的潜力,但它们通常需要大型且广泛的数据集来训练基于人群的模型。

目的

本研究通过引入一种极简主义的方法来扩展我们之前的研究,用于预测特定于患者的适应性剂量。与我们之前的方法不同,该方法涉及微调预先训练的人群模型,而是仅使用患者的初始治疗数据从头开始训练模型。这种针对特定于患者的剂量预测器旨在增强临床可访问性,从而使医生和治疗计划人员能够在 ART 中做出更明智、更具定量性的决策。我们假设,与基于人群的 DL 模型相比,基于患者的 DL 模型将为各自的患者提供更准确的适应性剂量预测。

方法

我们选择了 33 名患者来训练自适应人群 (AP) 模型。另外选择了 10 名患者,他们各自的初始 RT 数据作为训练特定于患者 (PS) 模型的单个样本。这 10 名患者包含另外 26 个 ART 计划,这些计划被保留作为测试数据集,以评估 AP 与 PS 模型剂量预测性能。我们通过比较预测剂量与最初传递的地面真实剂量来使用平均绝对百分比误差 (MAPE) 评估模型性能。我们使用 Wilcoxon 符号秩检验来确定测试数据集中 AP 和 PS 模型结果之间 MAPE 差异的统计学意义。此外,我们计算了分段结构的预测和地面真实平均剂量之间的差异,并确定了每个差异的统计学意义。

结果

AP 和 PS 模型剂量预测的平均 MAPE 分别为 5.759%和 4.069%。Wilcoxon 符号秩检验产生双侧 p 值 = ,表明 AP 和 PS 模型剂量预测之间的 MAPE 差异具有统计学意义,95%置信区间 = [-2.1610,-1.0130],表明人群中 AP 和 PS 模型之间的 MAPE 差异有 95%的置信度落在这个范围内。在总共 24 个分段结构中,对于 12 个结构的平均剂量差异的比较具有统计学意义,双侧 p 值均<0.05。

结论

我们的研究表明,基于患者的深度学习模型在应用于 ART 方面具有潜力。值得注意的是,我们的方法通过最小化所需训练数据集的大小来简化训练过程,因为只需要单个患者的初始治疗数据。考虑实施此类技术的外部机构可以打包此类模型,以便仅需要上传参考治疗计划即可进行模型训练和部署。我们的单患者学习策略由于其最小数据集要求及其在癌症治疗个性化中的实用性,在 ART 中具有潜力。

相似文献

本文引用的文献

8
Image Segmentation Using Deep Learning: A Survey.基于深度学习的图像分割技术综述。
IEEE Trans Pattern Anal Mach Intell. 2022 Jul;44(7):3523-3542. doi: 10.1109/TPAMI.2021.3059968. Epub 2022 Jun 3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验