Suppr超能文献

人工智能与医生的智能:心电图中机器学习贡献一瞥

Artificial Intelligence versus Doctors' Intelligence: A Glance on Machine Learning Benefaction in Electrocardiography.

作者信息

Ponomariov Victor, Chirila Liviu, Apipie Florentina-Mihaela, Abate Raffaele, Rusu Mihaela, Wu Zhuojun, Liehn Elisa A, Bucur Ilie

机构信息

Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Germany.

Department of Cardiology, Pulmonology, Angiology and Intensive Care, University Hospital, RWTH Aachen University, Germany.

出版信息

Discoveries (Craiova). 2017 Sep 30;5(3):e76. doi: 10.15190/d.2017.6.

Abstract

Computational machine learning, especially self-enhancing algorithms, prove remarkable effectiveness in applications, including cardiovascular medicine. This review summarizes and cross-compares the current machine learning algorithms applied to electrocardiogram interpretation. In practice, continuous real-time monitoring of electrocardiograms is still difficult to realize. Furthermore, automated ECG interpretation by implementing specific artificial intelligence algorithms is even more challenging. By collecting large datasets from one individual, computational approaches can assure an efficient personalized treatment strategy, such as a correct prediction on patient-specific disease progression, therapeutic success rate and limitations of certain interventions, thus reducing the hospitalization costs and physicians' workload. Clearly such aims can be achieved by a perfect symbiosis of a multidisciplinary team involving clinicians, researchers and computer scientists. Summarizing, continuous cross-examination between machine intelligence and human intelligence is a combination of precision, rationale and high-throughput scientific engine integrated into a challenging framework of big data science.

摘要

计算机器学习,尤其是自我增强算法,在包括心血管医学在内的应用中证明了显著的有效性。本综述总结并交叉比较了目前应用于心电图解读的机器学习算法。在实践中,心电图的持续实时监测仍难以实现。此外,通过实施特定的人工智能算法进行自动心电图解读更具挑战性。通过从个体收集大型数据集,计算方法可以确保制定高效的个性化治疗策略,例如对患者特定的疾病进展、治疗成功率和某些干预措施的局限性做出正确预测,从而降低住院成本和医生的工作量。显然,这样的目标可以通过一个由临床医生、研究人员和计算机科学家组成的多学科团队的完美共生来实现。总之,机器智能和人类智能之间的持续交叉检验是一个将精确性、合理性和高通量科学引擎整合到大数据科学这一具有挑战性框架中的组合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6e5/6941587/a44a707383fc/discoveries-05-076-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验