Department of Biotechnology, Faculty of Science, Taif University, P.O. Box 888, Taif, 21974, Saudi Arabia.
Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
Curr Microbiol. 2020 Aug;77(8):1767-1779. doi: 10.1007/s00284-020-01991-8. Epub 2020 Apr 23.
In case of Escherichia coli and Klebsiella pneumoniae infection, the increased prominence of multidrug-resistance strains has become the greatest challenge in the urinary tract disease treatment. Therefore, the 16S rRNA sequencing of multidrug-resistant strains was performed, in addition to those of plasmids and genes responsible for multidrug resistance. These strains showed containing responsible genes Sulfonamides sul1, Tetracycline Tet(A), Tetracycline Tet(B), chloramphenicol catA1, β-lactams blaSHV, and cmlA. Also, the strains demonstrated resistance to at least 10 types of antibiotics or more due to carrying various plasmids. For increasing the level of public health in daily life and treatment of multidrug-resistant bacteria, the nanomedicine was employed. Consequently, ZnO nanoparticles (ZnONPs-E) were synthesized by employing supernatant of Escherichia hermannii strain isolated from raw milk source. The E. hermannii strain produces high concentration of ZnONPs-E compared to other strains so we used it in this study. This ZnONPs-E has a minimal inhibitory concentration (MIC) ranged from the concentration 10 μg/ml to 40 μg/ml against E. coli and K. pneumoniae, respectively. The antimicrobial efficiency of ZnONPs-E was 40 µg/ml and it was superior to the reported values in literature. Moreover, SEM results evident for distorted membrane morphology, blebbing of membrane, cell elongation, and leakage of cellular contents due to ZnONPs-E activity against tested bacteria. These results indicated that the ZnONPs-E exhibited interesting antimicrobial activity against pathogenic extended-spectrum β-lactamases (ESBLs) strains. The present study revealed that the active components entered in biosynthesis of ZnONPs-E pave the way to lead its effective nano-medical and drug delivery applications.
在大肠埃希菌和肺炎克雷伯菌感染的情况下,多药耐药菌株的突出性增加已成为治疗尿路感染疾病的最大挑战。因此,对多药耐药菌株进行了 16S rRNA 测序,除了那些与多药耐药有关的质粒和基因。这些菌株含有磺胺类 sul1、四环素 Tet(A)、四环素 Tet(B)、氯霉素 catA1、β-内酰胺 blaSHV 和 cmlA 等耐药基因。此外,由于携带各种质粒,这些菌株对至少 10 种抗生素或更多种抗生素表现出耐药性。为了提高日常生活中的公共卫生水平和治疗多药耐药菌的水平,采用了纳米医学。因此,通过利用从生乳源分离的赫氏埃希氏菌(Escherichia hermannii)菌株的上清液合成了氧化锌纳米粒子(ZnONPs-E)。与其他菌株相比,E. hermannii 菌株产生的 ZnONPs-E 浓度更高,因此我们在本研究中使用了该菌株。这种 ZnONPs-E 对大肠埃希菌和肺炎克雷伯菌的最小抑菌浓度(MIC)范围分别为 10μg/ml 至 40μg/ml。ZnONPs-E 的抗菌效率为 40μg/ml,优于文献报道的数值。此外,SEM 结果表明,由于 ZnONPs-E 对测试细菌的活性,细胞膜形态扭曲、细胞膜起泡、细胞伸长和细胞内容物泄漏。这些结果表明,ZnONPs-E 对致病性超广谱β-内酰胺酶(ESBLs)菌株表现出有趣的抗菌活性。本研究表明,进入 ZnONPs-E 生物合成的活性成分为其有效的纳米医学和药物输送应用铺平了道路。