Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital , Boston, MA, USA.
Harvard Medical School , Boston, MA, USA.
Gut Microbes. 2020 Sep 2;11(5):1139-1142. doi: 10.1080/19490976.2020.1747336. Epub 2020 Apr 24.
User-friendly computational tools for 16S ribosomal RNA (rRNA) sequencing analysis enable researchers who are not bioinformaticians to analyze and interpret sequencing data from microbial communities. These tools' easy-to-use interfaces belie the sophisticated and rapidly-evolving science of their underlying algorithms. When analyzing 16S data from a simple microbiome experiment, we found that superficially unimportant decisions about the bioinformatic pipeline led to results with radically different biological interpretations. We share these results as a cautionary tale whose moral is that, in 16S analysis, the devil is in the details. Wet bench researchers should therefore strongly consider partnering with bioinformaticians or computational biologists when analyzing 16S data.
用户友好的 16S 核糖体 RNA(rRNA)测序分析计算工具使非生物信息学家的研究人员能够分析和解释微生物群落的测序数据。这些工具的易用界面掩盖了其底层算法的复杂和快速发展的科学。在分析来自简单微生物组实验的 16S 数据时,我们发现生物信息学管道中表面上不重要的决策导致了具有根本不同生物学解释的结果。我们分享这些结果是为了敲响警钟,其寓意是,在 16S 分析中,魔鬼在细节中。因此,湿实验室研究人员在分析 16S 数据时应强烈考虑与生物信息学家或计算生物学家合作。