Suppr超能文献

强扩散梯度允许在人脑内和轴外梯度回波信号的分离。

Strong diffusion gradients allow the separation of intra- and extra-axonal gradient-echo signals in the human brain.

机构信息

Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK.

Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK.

出版信息

Neuroimage. 2020 Aug 15;217:116793. doi: 10.1016/j.neuroimage.2020.116793. Epub 2020 Apr 23.

Abstract

The quantification of brain white matter properties is a key area of application of Magnetic Resonance Imaging (MRI), with much effort focused on using MR techniques to quantify tissue microstructure. While diffusion MRI probes white matter (WM) microstructure by characterising the sensitivity of Brownian motion of water molecules to anisotropic structures, susceptibility-based techniques probe the tissue microstructure by observing the effect of interaction between the tissue and the magnetic field. Here, we unify these two complementary approaches by combining ultra-strong (300mT/m) gradients with a novel Diffusion-Filtered Asymmetric Spin Echo (D-FASE) technique. Using D-FASE we can separately assess the evolution of the intra- and extra-axonal signals under the action of susceptibility effects, revealing differences in the behaviour in different fibre tracts. We observed that the effective relaxation rate of the ASE signal in the corpus callosum decreases with increasing b-value in all subjects (from 17.1±0.7s at b=0s/mm to 14.6±0.7s at b=4800s/mm), while this dependence on b in the corticospinal tract is less pronounced (from 12.0±1.1s at b=0s/mm to 10.7±0.5s at b=4800s/mm). Voxelwise analysis of the signal evolution with respect to b-factor and acquisition delay using a microscopic model demonstrated differences in gradient echo signal evolution between the intra- and extra-axonal pools.

摘要

脑白质属性的量化是磁共振成像(MRI)的一个关键应用领域,研究人员致力于利用磁共振技术来量化组织的微观结构。扩散 MRI 通过描述水分子布朗运动对各向异性结构的敏感性来探测白质(WM)的微观结构,而基于磁化率的技术则通过观察组织与磁场相互作用的效果来探测组织的微观结构。在这里,我们通过结合超强度(300mT/m)梯度和一种新颖的扩散滤波非对称自旋回波(D-FASE)技术,将这两种互补的方法结合起来。使用 D-FASE,我们可以分别评估在磁化率效应作用下的内轴突和外轴突信号的演化,揭示不同纤维束中行为的差异。我们观察到,在所有受试者中,ASE 信号的有效弛豫率随着 b 值的增加而降低(从 b=0s/mm 时的 17.1±0.7s 降低到 b=4800s/mm 时的 14.6±0.7s),而在皮质脊髓束中,这种对 b 值的依赖性则不太明显(从 b=0s/mm 时的 12.0±1.1s 降低到 b=4800s/mm 时的 10.7±0.5s)。使用微观模型对相对于 b 因子和采集延迟的信号演化进行体素分析,证明了内轴突和外轴突池之间梯度回波信号演化的差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5a7/7613126/9c9b670a2257/EMS150877-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验