Suppr超能文献

预测典型发展儿童样本中阅读、拼写和数学的个体差异:共病视角下的研究。

Predicting individual differences in reading, spelling and maths in a sample of typically developing children: A study in the perspective of comorbidity.

机构信息

Department of Psychology, Sapienza University of Rome, Rome, Italy.

Neuropsychology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy.

出版信息

PLoS One. 2020 Apr 30;15(4):e0231937. doi: 10.1371/journal.pone.0231937. eCollection 2020.

Abstract

We examined reading, spelling, and mathematical skills in an unselected group of 129 Italian fifth graders by testing various cognitive predictors for each behaviour. As dependent variables, we measured performance in behaviours with a clear functional value in everyday life, such as reading a text, spelling under dictation and doing mental and written computations. As predictors, we selected cognitive dimensions having an explicit relation with the target behaviour (called proximal predictors), and prepared various tests in order to select which task had the best predictive power on each behaviour. The aim was to develop a model of proximal predictors of reading (speed and accuracy), spelling (accuracy) and maths (speed and accuracy) characterized by efficacy also in comparison to the prediction based on general cognitive factors (i.e., short-term memory, phonemic verbal fluency, visual perceptual speed, and non-verbal intelligence) and parsimony, pinpointing the role of both common and unique predictors as envisaged in the general perspective of co-morbidity. With one exception (reading accuracy), the proximal predictors models (based on communality analyses) explained a sizeable amount of variance, ranging from 27.5% in the case of calculation (accuracy) to 48.7% of reading (fluency). Models based on general cognitive factors also accounted for some variance (ranging from 6.5% in the case of spelling to 19.5% in the case of reading fluency) but this was appreciably less than that explained by models based on the hypothesized proximal predictors. In general, results confirmed the efficacy of proximal models in predicting reading, spelling and maths although they offered only limited support for common predictors across different learning skills; namely, performance in the Orthographic Decision test entered as a predictor of both reading and spelling indicating that a single orthographic lexicon may account for performance in reading and spelling. Possible lines of research to expand on this approach are illustrated.

摘要

我们通过测试各种认知预测因子来研究 129 名意大利五年级学生的阅读、拼写和数学技能。作为因变量,我们测量了具有明确日常生活功能价值的行为表现,例如阅读文本、听写拼写和进行心算和书面计算。作为预测因子,我们选择了与目标行为具有明确关系的认知维度(称为近端预测因子),并准备了各种测试,以便选择哪个任务对每种行为具有最佳的预测能力。目的是开发一种近端预测因子的阅读(速度和准确性)、拼写(准确性)和数学(速度和准确性)模型,该模型在与基于一般认知因素(即短期记忆、语音词汇流畅性、视觉感知速度和非言语智力)的预测相比也具有功效,并且具有简约性,突出了共同和独特预测因子的作用,如其在共病的一般观点中所设想的那样。除了一个例外(阅读准确性)之外,近端预测因子模型(基于共通性分析)解释了相当大的方差,从计算(准确性)的 27.5%到阅读(流畅性)的 48.7%。基于一般认知因素的模型也解释了一些方差(拼写的范围从 6.5%到阅读流畅性的 19.5%),但明显低于基于假设的近端预测因子的模型所解释的方差。总的来说,结果证实了近端模型在预测阅读、拼写和数学方面的功效,尽管它们仅为不同学习技能的共同预测因子提供了有限的支持;即,在正字法决策测试中的表现作为阅读和拼写的预测因子,表明单一的正字法词汇表可能解释阅读和拼写的表现。说明了扩展此方法的可能研究方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39ea/7192483/9eb00aae44b8/pone.0231937.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验