Suppr超能文献

使用参数调优的约束独立分量分析提取时变时空网络。

Extraction of Time-Varying Spatiotemporal Networks Using Parameter-Tuned Constrained IVA.

出版信息

IEEE Trans Med Imaging. 2019 Jul;38(7):1715-1725. doi: 10.1109/TMI.2019.2893651. Epub 2019 Jan 23.

Abstract

Dynamic functional connectivity analysis is an effective way to capture the networks that are functionally associated and continuously changing over the scanning period. However, these methods mostly analyze the dynamic associations across the activation patterns of the spatial networks while assuming that the spatial networks are stationary. Hence, a model that allows for the variability in both domains and reduces the assumptions imposed on the data provides an effective way for extracting spatiotemporal networks. Independent vector analysis (IVA) is a joint blind source separation technique that allows for estimation of spatial and temporal features while successfully preserving variability. However, its performance is affected for higher number of datasets. Hence, we develop an effective two-stage method to extract time-varying spatial and temporal features using IVA, mitigating the problems with higher number of datasets while preserving the variability across subjects and time. The first stage is used to extract reference signals using group-independent component analysis (GICA) that are used in a parameter-tuned constrained IVA framework to estimate time-varying representations of these signals by preserving the variability through tuning the constraint parameter. This approach effectively captures variability across time from a large-scale resting-state fMRI data acquired from healthy controls and patients with schizophrenia and identifies more functionally relevant connections that are significantly different among healthy controls and patients with schizophrenia, compared with the widely used GICA method alone.

摘要

动态功能连接分析是一种有效的方法,可以捕捉在扫描期间具有功能关联且不断变化的网络。然而,这些方法主要分析空间网络的激活模式之间的动态关联,同时假设空间网络是静止的。因此,允许在两个域中变化并减少对数据施加的假设的模型为提取时空网络提供了一种有效方法。独立向量分析(IVA)是一种联合盲源分离技术,允许同时估计空间和时间特征,同时成功地保留变异性。然而,它的性能受到数据集数量增加的影响。因此,我们开发了一种有效的两阶段方法,使用 IVA 提取时变空间和时间特征,减轻了数据集数量增加的问题,同时保留了跨受试者和时间的变异性。第一阶段用于使用组独立成分分析(GICA)提取参考信号,这些信号用于参数调整约束 IVA 框架中,通过调整约束参数来保留变异性,从而估计这些信号的时变表示。与单独使用广泛使用的 GICA 方法相比,这种方法可以有效地从健康对照组和精神分裂症患者的大规模静息态 fMRI 数据中捕捉随时间变化的变异性,并识别出更具功能相关性的连接,这些连接在健康对照组和精神分裂症患者之间存在显著差异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验