Suppr超能文献

通过基于整合网络的方法揭示胶质母细胞瘤的分子机制。

Unveiling the Molecular Mechanisms of Glioblastoma through an Integrated Network-Based Approach.

作者信息

Kaynar Ali, Kim Woonghee, Ceyhan Atakan Burak, Zhang Cheng, Uhlén Mathias, Turkez Hasan, Shoaie Saeed, Mardinoglu Adil

机构信息

Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London SE1 9RT, UK.

Science for Life Laboratory, KTH-Royal Institute of Technology, 171211 Stockholm, Sweden.

出版信息

Biomedicines. 2024 Oct 1;12(10):2237. doi: 10.3390/biomedicines12102237.

Abstract

: Despite current treatments extending the lifespan of Glioblastoma (GBM) patients, the average survival time is around 15-18 months, underscoring the fatality of GBM. This study aims to investigate the impact of sample heterogeneity on gene expression in GBM, identify key metabolic pathways and gene modules, and explore potential therapeutic targets. : In this study, we analysed GBM transcriptome data derived from The Cancer Genome Atlas (TCGA) using genome-scale metabolic models (GEMs) and co-expression networks. We examine transcriptome data incorporating tumour purity scores (TPSs), allowing us to assess the impact of sample heterogeneity on gene expression profiles. We analysed the metabolic profile of GBM by generating condition-specific GEMs based on the TPS group. : Our findings revealed that over 90% of genes showing brain and glioma specificity in RNA expression demonstrate a high positive correlation, underscoring their expression is dominated by glioma cells. Conversely, negatively correlated genes are strongly associated with immune responses, indicating a complex interaction between glioma and immune pathways and non-tumorigenic cell dominance on gene expression. TPS-based metabolic profile analysis was supported by reporter metabolite analysis, highlighting several metabolic pathways, including arachidonic acid, kynurenine and NAD pathway. Through co-expression network analysis, we identified modules that significantly overlap with TPS-correlated genes. Notably, and are upregulated in High TPS, show a high correlation with TPS, and emerged as promising therapeutic targets. Additionally, exhibits a high centrality score within the co-expression module, which shows a positive correlation with TPS. Moreover, , an immune-related gene expressed in the brain, showed a negative correlation and upregulated in Low TPS, highlighting the importance of modulating immune responses in the GBM mechanism. : Our study uncovers sample heterogeneity's impact on gene expression and the molecular mechanisms driving GBM, and it identifies potential therapeutic targets for developing effective treatments for GBM patients.

摘要

尽管目前的治疗方法延长了胶质母细胞瘤(GBM)患者的寿命,但平均生存时间约为15至18个月,这凸显了GBM的致命性。本研究旨在调查样本异质性对GBM基因表达的影响,确定关键代谢途径和基因模块,并探索潜在的治疗靶点。:在本研究中,我们使用基因组规模代谢模型(GEMs)和共表达网络分析了来自癌症基因组图谱(TCGA)的GBM转录组数据。我们检查了纳入肿瘤纯度评分(TPSs)的转录组数据,使我们能够评估样本异质性对基因表达谱的影响。我们通过基于TPS组生成条件特异性GEMs来分析GBM的代谢谱。:我们的研究结果显示,在RNA表达中显示脑和胶质瘤特异性的基因中,超过90%表现出高度正相关,这凸显了它们的表达由胶质瘤细胞主导。相反,负相关基因与免疫反应密切相关,表明胶质瘤与免疫途径之间存在复杂的相互作用,以及非致瘤细胞对基因表达的主导作用。基于TPS的代谢谱分析得到了报告代谢物分析的支持,突出了几个代谢途径,包括花生四烯酸、犬尿氨酸和NAD途径。通过共表达网络分析,我们确定了与TPS相关基因显著重叠的模块。值得注意的是,[基因名称1]和[基因名称2]在高TPS中上调,与TPS高度相关,并成为有前景的治疗靶点。此外,[基因名称3]在共表达模块中显示出高中心性得分,与TPS呈正相关。此外,[基因名称4]是一种在脑中表达的免疫相关基因,在低TPS中呈负相关且上调,突出了调节免疫反应在GBM机制中的重要性。:我们的研究揭示了样本异质性对基因表达的影响以及驱动GBM的分子机制,并确定了为GBM患者开发有效治疗方法的潜在治疗靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e20/11504402/112a8c1b4b6d/biomedicines-12-02237-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验