Suppr超能文献

基于混合卷积神经网络和极限学习机的乳腺癌检测与分析

Breast Cancer Detection and Analytics Using Hybrid CNN and Extreme Learning Machine.

作者信息

Sureshkumar Vidhushavarshini, Prasad Rubesh Sharma Navani, Balasubramaniam Sathiyabhama, Jagannathan Dhayanithi, Daniel Jayanthi, Dhanasekaran Seshathiri

机构信息

Department of Computer Science and Engineering, SRM Institute of Science and Technology, Vadapalani, Chennai 600026, India.

Department of Community Medicine, Government Mohan Kumaramangalam Medical College, Salem 636030, India.

出版信息

J Pers Med. 2024 Jul 26;14(8):792. doi: 10.3390/jpm14080792.

Abstract

Early detection of breast cancer is essential for increasing survival rates, as it is one of the primary causes of death for women globally. Mammograms are extensively used by physicians for diagnosis, but selecting appropriate algorithms for image enhancement, segmentation, feature extraction, and classification remains a significant research challenge. This paper presents a computer-aided diagnosis (CAD)-based hybrid model combining convolutional neural networks (CNN) with a pruned ensembled extreme learning machine (HCPELM) to enhance breast cancer detection, segmentation, feature extraction, and classification. The model employs the rectified linear unit (ReLU) activation function to enhance data analytics after removing artifacts and pectoral muscles, and the HCPELM hybridized with the CNN model improves feature extraction. The hybrid elements are convolutional and fully connected layers. Convolutional layers extract spatial features like edges, textures, and more complex features in deeper layers. The fully connected layers take these features and combine them in a non-linear manner to perform the final classification. ELM performs classification and recognition tasks, aiming for state-of-the-art performance. This hybrid classifier is used for transfer learning by freezing certain layers and modifying the architecture to reduce parameters, easing cancer detection. The HCPELM classifier was trained using the MIAS database and evaluated against benchmark methods. It achieved a breast image recognition accuracy of 86%, outperforming benchmark deep learning models. HCPELM is demonstrating superior performance in early detection and diagnosis, thus aiding healthcare practitioners in breast cancer diagnosis.

摘要

早期发现乳腺癌对于提高生存率至关重要,因为它是全球女性主要死因之一。乳房X光检查被医生广泛用于诊断,但为图像增强、分割、特征提取和分类选择合适的算法仍然是一个重大的研究挑战。本文提出了一种基于计算机辅助诊断(CAD)的混合模型,将卷积神经网络(CNN)与剪枝集成极限学习机(HCPELM)相结合,以增强乳腺癌的检测、分割、特征提取和分类。该模型采用修正线性单元(ReLU)激活函数,在去除伪影和胸肌后增强数据分析,并且与CNN模型杂交的HCPELM改进了特征提取。混合元素是卷积层和全连接层。卷积层提取诸如边缘、纹理等空间特征,并且在更深层提取更复杂的特征。全连接层获取这些特征并以非线性方式将它们组合起来以执行最终分类。极限学习机执行分类和识别任务,目标是达到最先进的性能。这个混合分类器通过冻结某些层并修改架构以减少参数来用于迁移学习,从而简化癌症检测。HCPELM分类器使用MIAS数据库进行训练,并与基准方法进行评估比较。它实现了86%的乳房图像识别准确率,优于基准深度学习模型。HCPELM在早期检测和诊断中表现出卓越性能,从而有助于医疗从业者进行乳腺癌诊断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/316f/11355507/6b398022275b/jpm-14-00792-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验